SGP.18. El siguiente sistema se encuentra en equilibrio termodinámico:

Fuente
$$T = 298 \text{ °K}$$
 $n^{(\alpha)} = 25$ $n^{(\alpha)}$ $n^{(\beta)} = 54$

Si se le retira la pared σ_1 y se deja evolucionar el sistema hasta alcanzar una nueva condición de equilibrio, evalúe:

- a) La variación de entalpía (H^f Hⁱ).
- b) La variación de volumen (V^f Vⁱ)
- c) La variación de energía interna (Úf Ui)
- d) El calor intercambiado con la fuente.
- e) El trabajo intercambiado con el medio ambiente.

Datos:

$$h(x_i) = x_1 a_1 + x_2 a_2 + x_1 x_2 (A_1^H x_2 + A_2^H x_1)$$

$$v^{m}(x_{i}) = x_{1}x_{2} (A_{1}^{V}x_{2} + A_{2}^{V}x_{1})$$

donde
$$A_1^H = -1.756,7$$
 cal/mol; $A_2^H = -1.917,6$ cal/mol $A_1^V = 0,037$ lt/mol; $A_2^V = 0,012$ lt/mol

$$A_1^V = 0,037$$
 lt/mol; $A_2^V = 0,012$ lt/mol

SGP.21. Un recipiente con dos compartimentos contiene en (α) 1,2 moles de acetona a 20°C y 2 atm, y en (β) 0,8 moles de metanol a 100°C (ver figura 1). Inicialmente las paredes σ 1 y σ 2 son adiabáticas y rígidas, y la pared σ 3 es adiabática y móvil. La presión externa es de 1 atm.

Se retira la pared σ 2 y se hace diatérmica la pared σ 1 (ver figura 2). Al alcanzar el equilibrio se obtiene una mezcla de acetona(1)-metanol(2) en equilibrio líquido-vapor, siendo las fracciones molares de acetona en el líquido $x_1 = 0.28$ y en el vapor $y_1 = 0.65$.

Calcular el calor intercambiado con la fuente.

Datos:

- Datos para la solución líquida de acetona(1)-metanol(2):

$$h^{m}(TPx_{i}) = x_{1}x_{2} [A_{2}(TP)x_{1} + A_{1}(TP)x_{2}]$$

A T = 60° C y P = 1 atm:

$$\lim_{x_1 \to 0} \left(\overline{h}_1^m \right) = \overline{h}_1^{m \infty} = 1,871 \ Kcal \ mol^{-1}; \ \lim_{x_2 \to 0} \overline{h}_2^m = \overline{h}_2^{m \infty} = 1,034 \ Kcal \ mol^{-1}$$

- Los gases son ideales.

Figura 1

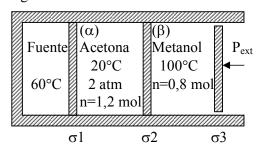
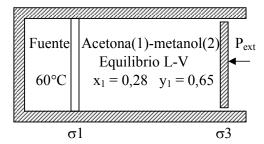
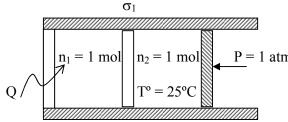
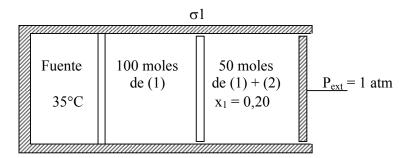




Figura 2


SGP.22. Evalúe la cantidad de calor que debe aportarse al sistema para lograr que al quitar la pared σ_1 la temperatura permanezca constante.

- (1) Diclorometano
- (2) Acetona

Datos: Ver problema CGP 31

SGP.23. Teniendo en cuenta el sistema Diclorometano(1) – Acetona (2) que se describe en el problema CGP.31, ¿cuál es el calor intercambiado con la fuente cuando se retira la pared σ1 y se deja alcanzar el equilibrio?

