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The onservation laws governing the thermomehanial proesses in a one-dimensionalshape memory solid 
 = (0; 1) with Landau-Ginzburg free energy potential 	 giverise to the following initial-boundary value problem.(1:1)8>>>>><>>>>>: �utt � ��uxxt + uxxxx = f(x; t) + ��x � ���	(ux; uxx; �)� ; x 2 
; 0 � t � T;Cv�t � k�xx = g(x; t) + 2�2�uxuxt + ��u2xt; x 2 
; 0 � t � T;u(x; 0) = u0(x); ut(x; 0) = u1(x); �(x; 0) = �0(x); x 2 
;u(0; t) = u(1; t) = uxx(0; t) = uxx(1; t) = 0; 0 � t � T;�x(0; t) = 0; k�x(1; t) = k1 (��(t)� �(1; t)) ; 0 � t � T:The funtions, variables and parameters involved in (1.1) have the following physialmeaning: u(x; t) = displaement; �(x; t) = absolute temperature; � = mass density;k = thermal ondutivity oeÆient; Cv = spei� heat; � = visosity oeÆient;f(x; t) = distributed fores ating on the body (input); g(x; t) = distributed heatsoures (input); u0(x) = initial displaement; u1(x) = initial veloity; �0(x) = initialtemperature; ��(t) = temperature of the surrounding medium (input); k1 = positiveonstant, proportional to the rate of thermal exhange at the right boundary, and Tis a presribed �nal time. The funtion 	, whih represents the free energy densityof the system, is assumed to be a funtion of the linearized shear strain � = ux, thespatial derivative of the strain �x = uxx and the temperature �, and is taken in theLandau-Ginzburg form	(�; �x; �) = 	0(�) + �2(� � �1)�2 � �4�4 + �6�6 + 2 �2x;	0(�) = �Cv� log� ��2�+ Cv� + C; (1.2)where �1, �2 are two ritial temperatures and �2, �4, �6,  are positive onstants,all depending on the material being onsidered. Note that for values of � lose to�1 and �x �xed, the funtion 	(�; �x; �) is a nononvex funtion of �. This propertyis related to the hysteresis phenomenon whih araterizes this type of materialsin the low and intermediate temperature ranges. The stress-strain relations arestrongly temperature-dependent. The behavior goes from elasti, ideally-plasti atlow temperatures, to pseudoelasti or superelasti at intermediate temperatures, toalmost linearly elasti in the high temperature range. Shape memory and solid-solidphase transitions (martensiti transformations) are other peuliar harateristisof these materials whose dynamial behavior is desribed by system (1.1). For adetailed review of these and other properties and the derivations of the equationsin (1.1) we refer the reader to [25℄ and the referenes therein.The boundary onditions mean that the body is lamped at both ends, thermallyinsulated at the left end and, at the right end, the rate of thermal exhange ispresribed. The nonlinear oupled equations in (1.1) are sometimes referred to asthe equations of thermo-viso-elasto-plastiity. In partiular, the �rst equation in(1.1) an be regarded as a nonlinear beam equation in u, while the seond is anonlinear heat equation in �.



Initial boundary value problems of the type (1.1) have been studied by severalauthors ([15℄, [16℄, [21℄, [27℄, [28℄, [32℄, et.; see [25℄ for a review). Initial e�orts toprove existene of solutions for this type of systems onsidered the heat ux in theform q = �k�x � �k�xt, with � > 0, instead of the lassial Fourier law (� = 0).This assumption introdues the additional term ��k�xxt on the left hand side of theseond equation in (1.1). Although this was done merely for mathematial reasonsso that existene theorems ould be proved ([15℄, [16℄, [21℄, [22℄), it turns out thatthe seond law of thermodynamis is not satis�ed if � > 0, as it an be easily veri�edby heking the Clausius-Duhem inequality for the entropy prodution. Therefore,the ase � > 0 has no physial meaning. The �rst results on existene of solutionsfor the ase � = 0 are due to Sprekels ([27℄). However, he imposed very stronggrowth onditions on the free energy 	. In partiular, those onditions exludedthe physially relevant ase in whih 	 is given in the Landau-Ginzburg form (1.2).Later on, Zheng ([32℄) derived ertain apriori estimates from whih he onludedthat, if the initial data is smooth enough, then any loal solution of (1.1) with 	as in (1.2) an be extended globally in time. This result was later generalized bySprekels and Zheng ([28℄) to inlude more general free energy funtionals. Morereently, using a state-spae approah ([25℄) it was shown that system (1.1)-(1.2)has a loal solution for a muh broader set of initial data than the one onsideredin [28℄ and [32℄.From a pratial point of view it would be very important to �nd the values of allthe parameters in (1.1)-(1.2) that \best �t" experimental data for a given material.This is alled the parameter identi�ation problem (ID problem in the sequel).One this problem is solved, the next step is to determine how well this model anpredit the dynamis of a given shape memory material whih is subjeted to ertainexternal inputs. This is alled the model validation problem. Although numerialexperiments performed with system (1.1) have shown that physially reasonableresults an be obtained for ertain values of the parameters (see [4℄ and [19℄), theID problem still remains open.In order to establish the onvergene of omputational algorithms for parameteridenti�ation, one needs to show �rst that the solutions depend ontinuously on theparameters that one wants to estimate. As we shall see in the following setion,system (1.1)-(1.2) an be written as a semilinear Cauhy problem of the form _z(t) =A(q)z(t)+F (q; t; z), z(0) = z0, in an appropriate Hilbert spae Zq, where q is a vetorof admissible parameters, A(q) is a ertain di�erential operator assoiated with thelinear part of the partial di�erential equations in (1.1) and F (q; t; z) orrespondsto the nonlinear part of the system. In [26℄ it was shown that the nonlinear termF (q; t; z) is loally Lipshitz ontinuous in the state variable z in the topology ofthe graph of (�A(q))Æ, for any Æ > 34 . Although this result is neessary to show theontinuous dependene of the solutions of (1.1) with respet to the parameter q, itis not suÆient. In fat, it turns out that a key step in ahieving this result involvesproving that if fqng1n=1 is a sequene of admissible parameters onverging to q, then



the assoiated analyti semigroups T (t; qn) onverge strongly to T (t; q) in the normof the graph of (�A(q))Æ. This is a muh stronger result than the one obtained byusing the well known Trotter-Kato Theorem (see [25℄, Theorem 4.1).2. PRELIMINARIES AND STATE-SPACE FORMULATIONIn the sequel, an isomorphism will be understood to denote a bounded invertibleoperator from a Banah spae onto another.Let X be a Banah spae and X� its topologial dual. We denote with hx� ; xior hx ; x�i the value of x� at x. For eah x 2 X we de�ne the duality set S(x) :=fx� 2 X� : hx�; xi =kxk2 = kx�k2g. The Hahn-Banah theorem implies that S(x) is nonempty for everyx 2 X. If A is a linear operator in X with domainD(A), we say that A is dissipativeif for every x 2 D(A) there exists x� 2 S(x) suh that RehAx; x�i � 0. We say thatA is stritly dissipative if A is dissipative and the ondition RehAx; x�i = 0 for allx� 2 S(x) implies that x = 0. If X is a Hilbert spae then S(x) = fxg and thereforeA is dissipative i� RehAx; xi � 0 for every x 2 D(A). We say that the operator Ais maximal dissipative if A is dissipative and it has no proper dissipative extension.We say that the operator A is (maximal) aretive if �A is (maximal) dissipative.If the operator A is stritly dissipative and maximal dissipative, we will simply saythat A is stritly maximal dissipative.If A generates a strongly ontinuous semigroup T (t) on X then the type of T is de-�ned to be the real number w0(T ) := inft>0 1t log kT (t)k. It an be shown that the typeof a semigroup is either �nite or equals �1. Moreover, w0(T ) = limt!1 1t log kT (t)k.Also, the semigroup T (t) is of negative type i� T (t) is exponentially stable, i.e.,w0(T ) < 0 i� 9M � 1, � > 0 suh that kT (t)k � Me��t for all t > 0 (see [1,pp 17-21℄). If the semigroup T (t) generated by A is analyti and �(A) denotes thespetrum of A, then w0(T ) = sup�2�(A)Re � provided that �(A) 6= ; and w0(T ) = �1if �(A) = ; (see [1℄).Let us return now to our original problem (1.1)-(1.2). We de�ne the funtionL(x; t) := ��(t) os(2�x) and the transformation ~�(x; t) = �(x; t) � L(x; t). We alsode�ne the state spae Z := H10 (0; 1) \H2(0; 1)� L2(0; 1)� L2(0; 1), z :=  uvw! 2 Zand the admissible parameter setQ := �q = (�; Cv; �; �2; �4; �6; �1; ) j q 2 IR8>0	 :Next, we de�ne in Z an inner produt h�; �iq depending on the parameter q as follows* uvw! ; û̂v̂w!+q :=  Z 10 u00(x)û00(x) dx+ � Z 10 v(x)v̂(x) dx+ Cvk Z 10 w(x)ŵ(x) dx



and we denote by Zq the Hilbert spae Z endowed with the inner produt h�; �iq. Thenorm indued by h�; �iq in Zq will be denoted by k � kq. Note that these norms are allequivalent and, moreover, they are uniformly equivalent on ompat subsets of Q.Then the initial boundary value problem (1.1) with 	 as in (1.2) an be formallywritten as an abstrat semilinear Cauhy problem in Zq as follows( _z(t) = A(q)z(t) + F (q; t; z(t)); 0 � t � Tz(0) = z0; (2.1)where z(t)(x) =  u(x; t)ut(x; t)~�(x; t) !,D (A(q)) := ( uvw! 2 Zq ����� u 2 H4(0; 1); u(0) = u(1) = 0 = u00(0) = u00(1);v 2 H10 (0; 1) \H2(0; 1);w 2 H2(0; 1); w0(0) = 0; kw0(1) = �k1w(1) ) ;(2.2)and for  uvw! 2 D (A(q)),A(q) uvw! := 0� v�v00 � �u0000kCvw00 1A = 0� 0 I 0�� �4�x4 � �2�x2 00 0 kCv �2�x2 1A uvw! : (2.3)The element z0 is de�ned byz0(x) =  u0(x)u1(x)�0(x)� ��(0)os(2�x)!and the nonlinear mapping F (q; t; z) : Q� [0; T ℄� Zq ! Zq is de�ned byF (q; t; z) = F  q; t; uvw!! :=  0f2(q; t; z)f3(q; t; z)! ; (2.4)where�f2(q; t; z)(x) = f(x; t)+ ��x �2�2(w(x) + L(x; t)� �1)u0(x)� 4�4u0(x)3 + 6�6u0(x)5� ;Cvf3(q; t; z)(x) = g(x; t) + 2�2 (w(x) + L(x; t)) u0(x)v0(x)+ ��v0(x)2 � Cv�0�(t) os(2�x)� 4k�2L(x; t):The following results an be found in [25℄ and [26℄.



Theorem 2.1. ([25℄) Let q 2 Q and the operator A(q) : D (A(q)) � Zq ! Zq asde�ned by (2.2)-(2.3). Theni) A(q) is stritly maximal dissipative;ii) The adjoint A�(q) is also stritly maximal dissipative and is given by D (A�(q)) =D (A(q)), and for  uvw! 2 D (A�(q))A�(q) uvw! = 0� �v�v00 + �u0000kCvw00 1A = 0� 0 �I 0� �4�x4 � �2�x2 00 0 kCv �2�x2 1A uvw! ;iii) 0 2 � (A(q)), the resolvent set of A(q);iv) The spetrum � (A(q)) of A(q) onsists only of eigenvalues, � (A(q)) = �p (A(q)) =f�+;�n ; �ng1n=1 where �+;�n = p�n ��r(q)�pr2(q)� 1�, �n = �k�2nCv , with �n =n4�4� , r(q) = �p�2p and f�ng1n=1 are all the positive solutions of the equationtan � = k1k� . The orresponding set of normalized eigenvetors in Zq is given by( en�+n en0 ! ;  knenkn��n en0 ! ;  00�n!)1n=1 ;where en(x) = � 2� (�n + j�+n j2)� 12 sin(�nx), �n(x) = � k�nCv R �n0 os2(�) d�� 12 os(�nx)and k2n = �n+j�+n j2�n+j��n j2 .v) The operator A(q) generates an analyti semigroup T (t; q) of negative type whihsatis�es kT (t; q)kL(Zq) � e�!(q)t, for t � 0, where !(q) is given by!(q) = 8<: min�k�21Cv ; ��22 � ; if �2� � 4min�k�21Cv ; ��22 � �22p�p�2�� 4� ; if �2� > 4:It will be useful to introdue some notation for ertain interpolation spaes. If Xis a Banah spae and p � 1 , Lp�(X) will denote the Banah spae of all Bohnermeasurable mappings u : [0;1)! X suh that kukpLp�(X) := R10 ku(t)kpX dtt <1. LetX0, X1 be two Banah spaes with X0 ontinuously and densely embedded in X1,p � 1 and � 2 (0; 1). We shall denote by (X0; X1)�;p the spae of averages (or \real"interpolation spae)(X0; X1)�;p := �x 2 X1 ���� 9ui : [0;1)! Xi; i = 0; 1; t��u0 2 Lp�(X0);t1��u1 2 Lp�(X1) and x = u0(t) + u1(t) a.e. � :Endowed with the normkxk(X0;X1)�;p := inf(kt��u0kLp�(X0) + kt1��u1kLp�(X1) ����� t��u0 2 Lp�(X0);t1��u1 2 Lp�(X1) andx = u0(t) + u1(t) a.e. ) ;



(X0; X1)�;p is a Banah spae. In the partiular ase when p = 2 and X0, X1 areHilbert spaes, we shall denote (X0; X1)�;2 = [X0; X1℄�.Sine 0 2 � (A(q)) and A(q) generates an analyti semigroup T (t; q), the frationalÆ-powers (�A(q))Æ of �A(q) are well de�ned, losed, linear, invertible operators forany Æ � 0 (see [23, pp 69-75℄). Moreover, (�A(q))�Æ has the representation(�A(q))�Æ = 1�(Æ) Z 10 tÆ�1T (t; q) dt;where the integral onverges in the uniform operator topology for every Æ > 0. SineA(q) is losed and 0 2 � (A(q)), the operator (�A(q))Æ is also losed and invertiblefor eah Æ > 0. Therefore, D �(�A(q))Æ� endowed with the topology of the graphnorm is a Hilbert spae. Sine ((�A(q))Æ is boundedly invertible, the norm of thegraph of ((�A(q))Æ is equivalent to the norm kzkq;Æ := (�A(q))Æzq. We shalldenote by Zq;Æ the Hilbert spae D �(�A(q))Æ� endowed with the k � kq;Æ-norm.Theorem 2.2. ([26℄) Let q 2 Q, A(q) : D (A(q)) � Zq ! Zq as de�ned by (2.2)-(2.3), 0 < Æ < 1 and Zq;Æ as de�ned above. Theni) Zq;Æ = [D (A(q)) ; Zq℄1�Æ, in the sense of an isomorphism;ii) The norms kzkq;Æ, kzk(D(A(q));Zq)1�Æ;2 and kzkq + t1�ÆA(q)T (t; q)zL2�(Zq) areall equivalent in D �(�A(q))Æ�.The next lemma shows some relations between the spaes Zq;Æ for di�erent q's.Lemma 2.3. ([26℄) Let Æ 2 (0; 1). Then,i) For any pair q, q� 2 Q the spaes Zq;Æ and Zq�;Æ are isomorphi.ii) Moreover, for any ompat subset QC of Q the norms fk � kq;Æ : q 2 QCgare uniformly equivalent, i.e., there exist positive onstants m, M suh thatmkzkq;Æ � kzkq�;Æ �Mkzkq;Æ for every q, q� 2 QC and all z 2 D �(�A(q))Æ�\D �(�A(q�))Æ�.Consider the following standing hypotheses.(H1) There exist funtions Kf , Kg 2 L2(0; 1), Kf (x) � 0 a.e., Kg(x) � 0 a.e., suhthatjf(x; t1)� f(x; t2)j � Kf(x) jt1 � t2j and jg(x; t1)� g(x; t2)j � Kg(x) jt1 � t2jfor a.e. x 2 (0; 1) and all t1, t2 2 [0; T ℄.(H2) �� 2 H1(0; T ) and �0� is loally Lipshitz ontinuous in (0; T ).Theorem 2.4. ([26℄) Let q 2 Q, 0 < � < 14 and assume that the hypotheses (H1)and (H2) hold. Then,i) for any bounded subset U of [0; T ℄ � Zq; 34+� there exists a onstant L =L(q; U; ��; f; g) suh thatkF (q; t1; z1)� F (q; t2; z2)kq � L�jt1 � t2j+ kz1 � z2kq; 34+��



for all (t1; z1), (t2; z2) 2 U , i.e., the funtion F (q; t; z) : Q� [0; T ℄�Zq; 34+� !Zq is loally Lipshitz ontinuous in t and z. Moreover the onstant L an behosen independent of q on any ompat subset of Q;ii) for any initial data z0 2 D �(�A(q)) 34+��, there exists t1 = t1(q; z0) > 0suh that the initial value problem (2.1) has a unique strong solution z(t; q) 2C ([0; t1) : Zq) \ C1 ((0; t1) : Zq). Moreover ddtz(t; q) 2 C 14��lo ((0; t1℄ : Zq), i.e.,ddtz(t; q) is loally H�older ontinuous on (0; t1℄ with exponent 14 � �.Finally, we state the following theorem proved in [26℄, whih states that for any om-pat subset QC of the admissible parameter set Q, it is possible to �nd a nontrivialommon interval of existene for all solutions z(t; q), q 2 QC .Theorem 2.5. ([26℄) Let QC be a ompat subset of the admissible parameter setQ, q0 2 QC , z0 2 Zq0;Æ, where 34 < Æ < 1. Let �0; tM(q)� = �0; tM(q; z0)� denote themaximum interval of existene of the solution z(t; q) with initial ondition z(0; q) =z0. Then tM(QC) := infq2QC tM(q) > 03. CONTINUOUS DEPENDENCE ON THE MODEL PARAMETERSIn this setion we show that the mapping q ! z(� ; q) from the spae of admissibleparameters Q into the spae of solutions is ontinuous. More preisely, we shallshow that if fqng1n=1 is a sequene in Q onverging to q 2 Q, then the sequenefz(t; qn)g1n=1 onverges to z(t; q) in some appropriate sense.Throughout this setion, to simplify the notation we will denote with An = A(qn); A =A(q); Tn(t) = T (t; qn); T (t) = T (t; q), zn(t) = z(t; qn) and z(t) = z(t; q).We shall need the following lemmas.Lemma 3.1. Let fqng1n=1 be a sequene in Q, qn ! q 2 Q, and let A; An; T; Tnbe as above. Then kAnTn(t)z � AT (t)zkq ! 0 as n!1for every z 2 Zq and t > 0.Proof. Let z 2 Zq. Sine Tn(t), T (t) are analyti semigroups, Tn(t)z, T (t)z, are inD(An), D(A), respetively 8t > 0. From Theorem 3.5 in [25℄ it follows that thereexists an angle �, 0 < � < �2 , suh that the angular setor�� = f0g [ f� 2 C : jarg �j < �2 + �g � �(A) \ 1\n=1 �(An):



Now, let �2 < �1 < �2 + � and let � be the path omposed of the two raysre�i�1; rei�1; 0 � r < 1; � oriented so that Im(�) inreases along �. We havethe following expresions (see [23℄)AT (t)z = 12�i Z� �e�tR(�;A)z d�;AnTn(t)z = 12�i Z� �e�tR(�;An)z d�;for every z 2 Zq; t > 0, where R(�;A) = (�I � A)�1, R(�;An) = (�I � An)�1.Then AT (t)z � AnTn(t)z = 12�i Z� �e�t (R(�;A)� R(�;An)) z d�: (3.1)But k�e�t (R(�;A)� R(�;An)) zkq � j�jeRe(�)t � 1j�j + Cj�j� kzkq� (1 + C)eRe(�)tkzkq 2 L1(�);where the onstant C appears beause of the uniform equivalene of the norms k�kqnand k � kq. Also, for any �xed � 2 �k (R(�;A)� R(�;An)) zkq ! 0 as n!1:In fat, k (R(�;A)�R(�;An)) zkq = kR(�;An) [(�I � An)R(�;A)� I℄ zkq= kR(�;An)(A� An)R(�;A)zkq� kR(�;An)kL(Zq)k(A� An)R(�;A)zkqwhih onverges to zero as n goes to in�nity by virtue of the uniform boundedness ofkR(�;An)kL(Zq) and the strong onvergene of An to A (whih follows immediatelyfrom the de�nition of An and A, and the onvergene of qn to q).The lemma then follows from (3.1) and the Dominated Convergene Theorem. �Lemma 3.2. Under the same hypotheses of Lemma 3.1(�A)Æ(T (t)� Tn(t))zq ! 0 as n!1for every z 2 Zq, Æ 2 [0; 1℄ and t � 0.Remark. We note here that the assertion of Lemma 3.2 ould be obtained imme-diately if (�A)Æ ommuted with Tn(t). However, this is not true sine An does notommute with A, as it an be easily veri�ed.



Proof of Lemma 3.2. It suÆes to show the result for Æ = 1. We an writekA(T (t)� Tn(t))zk = [AT (t)� AnTn(t) + (I � AA�1n )AnTn(t)℄zq� k(AT (t)� AnTn(t))zkq + I � AA�1n L(Zq) kAnTn(t)zkq :As a onsequene of Lemma 3.1 the �rst term on the right of the above inequalitytends to zero as n goes to in�nity and the sequene fkAnTn(t)zkqg1n=1 is bounded.A straightforward alulation using the de�nition of A(q) shows that for any pair ofadmissible parameters q = (�; Cv; �; �2; �4; �6; �1; ), ~q = (~�; ~Cv; ~�; ~�2; ~�4; ~�6; ~�1; ~)2 Q and any z =  uvw! 2 ZqA(~q)A�1(q)z = 0B� u�~� � � �~~�� u00 + �~~�v�Cv~Cv�w 1CA ; (3.2)from whih it follows immediately that kI � AA�1n kL(Zq) ! 0 as n ! 1. Thetheorem then follows. �Lemma 3.3. Let QC be a ompat subset of Q. Then for any Æ 2 [0; 1℄ there existsa onstant C depending only on Æ and QC suh that(�A(q1))Æ(�A(q2))�ÆL(Zq3) � Cfor every q1; q2; q3 2 QC .Proof. Sine the operator A(q) is maximal dissipative (Theorem 2.1), the spae Zq;Æis isomorphi to the real interpolation spae [D(A(q)); Zq℄1�Æ, of order 1�Æ betweenZq and D(A(q)) (see [1℄), i.e.�D �(�A(q))Æ� ; k � kq;Æ� �= [D(A(q)); Zq℄1�Æ: (3.3)From (3.2) it follows that there exists a onstant C depending only on QC suhthat kA(~q)A�1(q)zk~q � Ckzk~q for every q; ~q 2 QC ; z 2 Zq. Letting � = A�1(q)z weobtain kA(~q)�k~q � CkA(q)�k~q for all q; ~q 2 QC ; � 2 D(A(q)): (3.4)Sine the k � kq-norms are uniformly equivalent for q 2 QC , it follows from (3.4) and(3.3) that the norms k � kq;Æ are also uniformly equivalent for q 2 QC . Thus, for anyq1; q2; q3 2 QCk(�A(q1))Æ(�A(q2))�Æzkq3 � C1k(�A(q1))Æ(�A(q2))�Æzkq1= C1k(�A(q2))�Æzkq1;Æ� C1 C2k(�A(q2))�Æzkq2;Æ= C1C2kzkq2� C1 C2C3kzkq3;



where the onstants Ci, i = 1; 2; 3, depend only on QC and Æ. �Remark. Sine Tn(t) is an analyti semigroup of ontrations, by a well knownresult on semigroup theory ([23℄), for any Æ 2 (0; 1℄, there exists a onstant CÆindependent of n suh that(�An)ÆTn(t)L(Zqn ) � CÆtÆj os �njwhere �n is any angle in (�2 ; �) for whih�(An) � f0g [ f� 2 C : j arg�j � �ng:As we mentioned in Lemma 3.1, in this ase the angle �n above an be hosenindependent of n. Hene, there exists a onstant ~CÆ depending only on Æ suh thatk(�An)ÆTn(t)kL(Zqn ) � ~CÆtÆ 8n = 1; 2; � � � :Next, we state a lemma whose proof an be found in [14℄ (Lemma 7.1.1).Lemma 3.4. Suppose L � 0, 0 < Æ < 1 and a(t) is a nonnegative, loally integrablefuntion on 0 � t � T . Let u(t) be a real valued funtion de�ned on [0; T ℄ satisfyingu(t) � a(t) + L Z t0 1(t� s)Æu(s) dson this interval. Then, there exists a onstant K = K(Æ) suh thatu(t) � a(t) +KL Z t0 a(s)(t� s)Æ ds for 0 � t < T:The following theorem will be essential for our main result.Theorem 3.5. Let Æ 2 �34 ; 1�, fqng1n=1 � Q, qn ! q 2 Q, and zn(t); z(t) be thesolutions of the IVP (2.1) with initial datum z0 2 D �(�A)Æ� orresponding to theparameters qn and q, respetively, and let [0; t1) be the maximal interval of existeneof z(t). Then, for any t01 < t1 there exists a onstant N0 suh that zn(t) exists on[0; t01℄ for every n � N0 and a onstant D suh thatkzn(t)kq;Æ � D; 8n � N0; 8t 2 [0; t01℄:Proof. Let Æ 2 �34 ; 1�, 0 < t01 < t1, and tn1 > 0 be suh that zn(t) exists on [0; tn1 ) foreah n 2 IN. Then, for t 2 [0;minft01; tn1g)z(t) = T (t)z0 + Z t0 T (t� s)F (s; z(s)) dszn(t) = Tn(t)z0 + Z t0 Tn(t� s)Fn(s; zn(s)) ds;



whih implykz(t)�zn(t)kq;Æ = k(�A)Æz(t)� (�A)Æzn(t)kq� (�A)Æ (T (t)� Tn(t)) z0q+ Z t0 (�A)ÆT (t� s)F (q; s; z(s))� (�A)ÆTn(t� s)F (qn; s; zn(s)) dsq� (�A)Æ (T (t)� Tn(t)) z0q+ Z to (�A)ÆT (t� s)F (q; s; z(s))� (�A)ÆTn(t� s)F (q; s; z(s)) dsq+ Z t0 (�A)ÆTn(t� s) [F (q; s; z(s))� F (qn; s; z(s))℄ dsq+ Z t0 (�A)ÆTn(t� s) [F (qn; s; z(s))� F (qn; s; zn(s))℄ dsq:= In1 (t) + In2 (t) + In3 (t) + In4 (t):Note that, even when this last inequality is true on [0;minft01; tn1g), In1 (t), In2 (t) andIn3 (t) are well de�ned on [0; t01℄.We have the following estimatesIn3 (t) � Z t0 k(�A)ÆTn(t� s)kL(Zq)kF (q; s; z(s))� F (qn; s; z(s))kq ds� C1 Z t0 k(�An)ÆTn(t� s)kL(Zqn )kF (q; s; z(s))� F (qn; s; z(s))kq ds� C1 Z t0 CÆ(t� s)Æ kF (q; s; z(s))� F (qn; s; z(s))kq ds:The seond and third inequality follow from Lemma 3.3 and the Remark preedingLemma 3.4, respetively. Now, for any s 2 [0; t01℄, kF (q; s; z(s))�F (qn; s; z(s))kq ! 0as n!1. Also, there exists a onstant C2 independent of n suh that kF (q; s; z(s))�F (qn; s; z(s))kq � C2 for every s 2 [0; t01℄, whih follows easily from the ontinuityof z(s) and the de�nition of F . Therefore, In3 (t) ! 0 as n ! 1 on [0; t01℄ by theDominated Convergene Theorem and In3 (t) � C1C2CÆ1� Æ t1�Æ, 8n 2 IN, 8t 2 [0; t01℄.To estimate In2 (t), observe thatIn2 (t) � Z t0 k(�A)Æ (T (t� s)� Tn(t� s))F (q; s; z(s))kq ds:Now, kF (q; s; z(s))kq is uniformly bounded on [0; t01℄, say kF (q; s; z(s))kq � C3,



8t 2 [0; t01℄ andk(�A)Æ(T (t� s)�Tn(t� s))kL(Zq)� k(�A)ÆT (t� s)kL(Zq) + k(�A)ÆTn(t� s)kL(Zq)� k(�A)ÆT (t� s)kL(Zq) + Ck(�An)ÆTn(t� s)kL(Zqn )� CÆ(t� s)Æ + C CÆ(t� s)Æ = C4(t� s)Æ :On the other hand, for any s 2 [0; t01℄ we havek(�A)Æ (T (t� s)� Tn(t� s))F (q; s; z(s))kq ! 0 as n!1by Lemma 3.2. Therefore In2 (t) ! 0 as n ! 1 by the Dominated ConvergeneTheorem, and also In2 (t) � C3C41� Æ t1�Æ, 8n, 8t 2 [0; t01℄.In regard to In1 (t) observe thatIn1 (t) = (�A)Æ (Tn(t)� T (t)) z0q= (�A)Æ(�An)�Æ(�An)ÆTn(t)z0 � (�A)ÆT (t)z0q� C Tn(t)(�An)Æz0q + T (t)(�A)Æz0q� C kTn(t)kL(Zq) C (�A)Æz0q + kT (t)kL(Zq) (�A)Æz0q� C5 (�A)Æz0q ;where we have used that z0 2 D �(�A)Æ� and the semigroups are ontrative. Also,by Lemma 3.2 In1 (t)! 0 as n!1.Similarly,In4 (t) � Z t0 k(�A)ÆTn(t� s)kL(Zq)kF (qn; s; z(s))� F (qn; s; zn(s))kq ds� C6 Z t0 1(t� s)Æ kF (qn; s; z(s))� F (qn; s; zn(s))kq ds:From the above estimates on In1 (t), In2 (t), In3 (t) and In4 (t), there followskz(t)� zn(t)kq;Æ � �n(t) +C6 Z t0 1(t� s)Æ kF (qn; s; z(s))� F (qn; s; zn(s))kq ds (3.5)where, for all t 2 [0; t01℄, �n(t) := In1 (t) + In2 (t) + In3 (t) satis�es 0 � �n(t) � C7for all n 2 IN and �n(t) ! 0 as n ! 1. In partiular, these onditions implyR t010 �n(t) dt! 0 as n!1.Let K = K(Æ) be as in Lemma 3.4 and de�ne ~K := C7 + C6C7K and M :=sup0�t�t01 kz(t)kq;Æ. From the ontinuity of z(t) it follows that M < 1. Letn 2 IN. Sine z(0) = zn(0) = z0, there exists Æn > 0 suh that kzn(t)kq;Æ �



M + 2 ~K for all t 2 [0; Æn℄. Let L be a Lipshitz onstant for F on the setU := [0; t01℄ � nkzkÆ �M + 2 ~Ko, valid for q and all the qn's. Then, from (3.5)and Lemma 3.4, we havekzn(t)� z(t)kq;Æ � fn(t) on 0 � t � Æn; (3.6)where fn(t) := �n(t) + C6LK Z t0 �n(s)(t� s)Æ ds, for t 2 [0; t01℄.Now, Z t0 �n(s)(t� s)Æ ds � Z t0 C7(t� s)Æ ds= C7 Z t0 1sÆ ds= C71� Æ t1�Æ:Choosing � = �(L) > 0 suÆiently small so that t1�Æ � 1� Æ2L for every t 2 [0; �℄, itfollows that Z t0 �n(s)(t� s)Æ ds � C72L for every t 2 [0; �℄: (3.7)On the other hand, if � < t � t01Z t0 �n(t)(t� s)Æ ds = Z t0 �n(t� s)sÆ ds= Z �0 �n(t� s)sÆ ds+ Z t� �n(t� s)sÆ ds� C72L + 1�Æ Z t0 �n(t� s) ds� C72L + 1�Æ Z t010 �n(s) ds:Hene, sine R t010 �n(s) ds! 0, there exists N0 suh thatZ t0 �n(t)(t� s)Æ � C72L + C72L = C7L 8t 2 [�; t01℄ and n � N0: (3.8)From (3.7) and (3.8) it follows thatfn(t) � C7 + C6C7K 8t 2 [0; t01℄ and n � N0: (3.9)Consequently, from (3.6) and (3.9)kzn(t)� z(t)kq;Æ � ~K 8n � N0 and t 2 [0; Æn℄;



whih implies kzn(t)kq;Æ �M + ~K 8n � N0 and t 2 [0; Æn℄: (3.10)Finally, let n � N0 be �xed. We laim that zn(t) exists on [0; t01℄ and for t 2 [0; t01℄,kzn(t)kq;Æ < M+2 ~K. In fat, suppose, on the ontrary, that there exists t� � t01 suhthat kzn(t�)kq;Æ = M + 2 ~K and kzn(t)kq;Æ < M + 2 ~K for 0 � t < t�. Then, in (3.6),Æn an be replaed by t� and (3.10) follows with Æn = t�, i.e. kzn(t)kq;Æ � M + ~Kon [0; t�℄. This ontradits kzn(t�)kq;Æ =M + 2 ~K. The theorem then follows takingD = M + 2 ~K. �Theorem 3.6. Under the same hypotheses of Theorem 3.5kzn(t)� z(t)kq;Æ ! 0; as n!1for every t 2 [0; t1).Remark. If the initial data is smooth enough, then the results in [28℄ and [32℄imply that t1 = 1 and therefore, this theorem ensures the k � kq;Æ-onvergene ofzn(t) to z(t) on the whole interval [0;1).Proof of Theorem 3.6. Let Æ 2 �34 ; 1� and t01 < t1. By Theorem 3.5 there existN0 2 IN and D > 0 suh that zn(t) exists and kzn(t)kq;Æ � D on [0; t01℄ for everyn � N0. Following the steps of Theorem 3.5 we see that for every t 2 [0; t01℄ andn � N0kz(t)� zn(t)kq;Æ � �n(t) + C6 Z t0 1(t� s)Æ kF (qn; s; z(s))� F (qn; s; zn(s))kq ds� �n(t) + LC6 Z t0 1(t� s)Æ kz(s)� zn(s)kq;Æ dswhere 0 � �n(t) � C7 and �n(t) ! 0 as n ! 1 for every t 2 [0; t01℄. In thelast inequality we have used the fat that F is loally Lipshitz ontinuous andkzn(t)kq;Æ � D, 8n � N0, 8t 2 [0; t01℄.Hene, by Lemma 3.4, there exists K > 0 suh thatkz(t)� zn(t)kq;Æ � �n(t) +K Z t0 �n(s)(t� s)Æ ds �! 0 as n!1:Sine t01 is arbitrary, the theorem follows. �4. CONCLUSIONSIn this paper we have shown that the solutions of the IBVP (1.1), with free en-ergy potential 	 in the Landau-Ginzburg form (1.2), depend ontinuously on the
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