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 = (0; 1). The funtions, variables and parameters involved in(1.1) have the following physial meaning: u(x; t) = displaement; �(x; t) = absolute temperature; � =mass density; k = thermal ondutivity oeÆient; Cv = spei� heat; � = visosity oeÆient; f(x; t) =distributed fores ating on the body (input); g(x; t) = distributed heat soures (input); u0(x) = initialdisplaement; u1(x) = initial veloity; �0(x) = initial temperature; ��(t) = temperature of the surroundingmedium (input); k1 = positive onstant, proportional to the rate of thermal exhange at the right boundary,and T is a presribed �nal time. The funtion 	, whih represents the free energy density of the system, isassumed to be a funtion of the linearized shear strain � = ux, the spatial derivative of the strain �x = uxxyThe work of the authors was supported in part by CONICET, Consejo Naional de InvestigaionesCient���as y T�enias and UNL, Universidad Naional del Litoral, Santa Fe, Argentina, through projetCAI+D 94-0016-004-023.zThis researh was supported in part by the Air Fore OÆe of Sienti� Researh under grants F49620-93-1-0280 and F49620-96-1-0329 while the author was a visiting sientist at the Air Fore Center for OptimalDesign and Control, Virginia Polytehni Institute and State University, Blaksburg, VA 24061-0531.



2and the temperature �, and is taken in the Landau-Ginzburg form	(�; �x; �) = 	0(�) + �2(� � �1)�2 � �4�4 + �6�6 + 2 �2x;	0(�) = �Cv� log� ��2�+ Cv� + C; (1.2)where �1, �2 are two ritial temperatures and �2, �4, �6,  are positive onstants, all depending on thematerial being onsidered and C � 0 is a �xed referene energy level. Note that for values of � lose to �1and �x �xed, the funtion 	(�; �x; �) is a nononvex funtion of �. This property is related to the hysteresisphenomenon whih araterizes this type of materials in the low and intermediate temperature ranges. Thestress-strain relations are strongly temperature-dependent. The behavior is elasti, ideally-plasti at lowtemperatures, superelasti at intermediate temperatures and almost linearly elasti in the high temperaturerange. Shape memory and solid-solid phase transitions (martensiti transformations) are other peuliarharateristis of these materials whose dynamial behavior is formally desribed by system (1.1). For adetailed review of these and other properties and the derivations of the equations in (1.1) we refer the readerto [28℄ and the referenes therein.The boundary onditions mean that the beam is simply supported at both ends, thermally insulated atthe left end and, at the right end, the rate of thermal exhange with the surrounding medium is presribed.The nonlinear oupled equations in (1.1) are sometimes referred to as the equations of thermo-viso-elasto-plastiity. In partiular, the �rst equation in (1.1) an be regarded as a nonlinear beam equation in u, whilethe seond is a nonlinear heat equation in �.Initial boundary value problems of the type (1.1) have been studied by several authors ([16℄, [17℄, [22℄,[26℄, [27℄, [30℄, et.; see [28℄ for a review). The �rst results on existene of solutions for IBVP's like (1.1) aredue to Sprekels ([30℄). However, he imposed very strong growth onditions on the free energy 	. In partiular,these onditions exluded the physially relevant ase in whih 	 is given in the Landau-Ginzburg form (1.2).Later on, Songmu ([26℄) derived ertain a-priori estimates from whih he onluded that, if the initial datais smooth enough, then any loal solution of (1.1) with 	 as in (1.2) an be extended globally in time. Thisresult was later generalized by Songmu and Sprekels ([27℄) to inlude more general free energy funtionals.More reently, using a state-spae approah ([28℄) it was shown that the IBVP (1.1) an be written as asemilinear Cauhy problem of the form _z(t) = A(q)z(t) + F (q; t; z), z(0) = z0, in an appropriate Hilbertspae Zq , where q is a vetor of admissible parameters, A(q) is a ertain di�erential operator assoiated withthe linear part of the partial di�erential equations in (1.1) and F (q; t; z) orresponds to the nonlinear partof the system. This approah provides a friendly framework for a suitable treatment of several problemsassoiated to (1.1) suh as existene, uniqueness, regularity and asymptoti behavior of solutions, as well asa powerful tool for numerial approximations, parameter estimation and ontrol.From a pratial point of view it would be very important to �nd the values of all the parameters in(1.1)-(1.2) that \best �t" experimental data for a given material. This is alled the parameter identi�ationproblem (ID problem in the sequel). One this problem is solved, the next step is to determine how well thismodel an predit the dynamis of a given shape memory material whih is subjeted to ertain externalinputs. This is alled the model validation problem. Although numerial experiments performed with system(1.1) have shown that physially reasonable results an be obtained for ertain values of the parameters (see[5℄ and [20℄), the ID problem still remains open.In order to establish the onvergene of omputational algorithms for parameter identi�ation, one needsto show �rst that the solutions depend ontinuously on the parameters that one wants to estimate. In [29℄ itwas shown that the nonlinear term F (q; t; z) is Lipshitz ontinuous in the state variable z in the topology ofthe graph of (�A(q))Æ , for any Æ > 34 . Although this result is neessary to show the ontinuous dependeneof the solutions of (1.1) with respet to the parameter q, it is not suÆient. In fat, it turns out that akey step in ahieving this result involves proving that if fqng1n=1 is a sequene of admissible parametersonverging to q, then the sequene of analyti semigroups T (t; qn) generated by A(qn), onverges stronglyto T (t; q) in the norm of the graph of (�A(q))Æ . This is a muh stronger result than the one we an obtainby a straighforward appliation of the well known Trotter-Kato Theorem (see [28, Theorem 4.1℄).2. Preliminaries and State-Spae FormulationIn the sequel, an isomorphism will be understood to denote a bounded invertible operator from a Banahspae onto another.



3Let X be a Banah spae and X� its topologial dual. We denote with hx� ; xi or hx ; x�i the value of x�at x. For eah x 2 X we de�ne the duality set S(x) := fx� 2 X� : hx�; xi =kxk2 = kx�k2	. The Hahn-Banah theorem implies that S(x) is nonempty for every x 2 X . If A is alinear operator in X with domain D(A), we say that A is dissipative if for every x 2 D(A) there existsx� 2 S(x) suh that RehAx; x�i � 0. We say that A is stritly dissipative if A is dissipative and the onditionRehAx; x�i = 0 for all x� 2 S(x) implies that x = 0. If X is a Hilbert spae then S(x) = fxg and therefore Ais dissipative i� RehAx; xi � 0 for every x 2 D(A). We say that the operator A is maximal dissipative if A isdissipative and it has no proper dissipative extension. We say that the operator A is (maximal) aretive if�A is (maximal) dissipative. If the operator A is stritly dissipative and maximal dissipative, we will simplysay that A is stritly maximal dissipative.If A generates a strongly ontinuous semigroup T (t) on X then the type of T is de�ned to be the realnumber w0(T ) := inft>0 1t log kT (t)k. It an be shown that the type of a semigroup is either �nite or equals �1.Moreover, w0(T ) = limt!1 1t log kT (t)k. Also, the semigroup T (t) is of negative type i� T (t) is exponentiallystable, i.e., w0(T ) < 0 i� 9M � 1, � > 0 suh that kT (t)k � Me��t for all t � 0 (see [2, pp 17-21℄). Ifthe semigroup T (t) generated by A is analyti, then w0(T ) = sup�2�(A)Re � provided that �(A) 6= ; and, byde�nition, w0(T ) = �1 if �(A) = ; (see [2℄).Let us now return to our original problem (1.1)-(1.2). We de�ne the funtion L(x; t) := ��(t) os(2�x)and the transformation ~�(x; t) = �(x; t) � L(x; t). We also de�ne the admissible parameter set Q :=�q = (�; Cv ; �; �2; �4; �6; �1; ) j q 2 IR8>0	, and the state spae Zq as the Hilbert spae H10 (0; 1)\H2(0; 1)�L2(0; 1)� L2(0; 1) endowed with the inner produt*0� uvw1A ;0� û̂v̂w1A+q :=  Z 10 u00(x)û00(x) dx+ � Z 10 v(x)v̂(x) dx+ Cvk Z 10 w(x)ŵ(x) dx:The norm indued by h�; �iq in Zq will be denoted by k � kq. Note that these norms are all equivalent and,moreover, they are uniformly equivalent on ompat subsets of Q. Then the initial-boundary value problem(1.1) with 	 as in (1.2) an be formally written as an abstrat semilinear Cauhy problem in Zq as follows:8<: ddtz(t) = A(q)z(t) + F (q; t; z(t)); 0 � t � Tz(0) = z0; (2.1)where z(t)(x) = 0� u(x; t)ut(x; t)~�(x; t) 1A,D (A(q)) := 8<:0� uvw1A 2 Zq ������ u 2 H4(0; 1); u(0) = u(1) = 0 = u00(0) = u00(1);v 2 H10 (0; 1) \H2(0; 1);w 2 H2(0; 1); w0(0) = 0; kw0(1) = �k1w(1) 9=; ; (2.2)and for 0� uvw1A 2 D (A(q)),A(q)0� uvw1A := 0� v�v00 � �u0000kCvw00 1A = 0� 0 I 0�� �4�x4 � �2�x2 00 0 kCv �2�x2 1A0� uvw1A : (2.3)The element z0 is de�ned by z0(x) = 0� u0(x)u1(x)�0(x) � ��(0) os(2�x)1Aand the nonlinear mapping F (q; t; z) : Q� [0; T ℄� Zq ! Zq is de�ned byF (q; t; z) = F 0�q; t;0� uvw1A1A := 0� 0f2(q; t; z)f3(q; t; z)1A ; (2.4)



4where �f2(q; t; z)(x) = f(x; t) + ��x �2�2(w(x) + L(x; t)� �1)u0(x)� 4�4u0(x)3 + 6�6u0(x)5� ;Cvf3(q; t; z)(x) = g(x; t) + 2�2 (w(x) + L(x; t))u0(x)v0(x) + ��v0(x)2 � Cv�0�(t) os(2�x)� 4k�2L(x; t):The following results an be found in [28℄ and [29℄.Theorem 2.1. ([28℄) Let q 2 Q and the operator A(q) : D (A(q)) � Zq ! Zq as de�ned by (2.2)-(2.3).Theni) A(q) is stritly maximal dissipative;ii) The adjoint A�(q) is also stritly maximal dissipative and is given by D (A�(q)) = D (A(q)),A�(q)0� uvw1A = 0� �v�v00 + �u0000kCvw00 1A = 0� 0 �I 0� �4�x4 � �2�x2 00 0 kCv �2�x2 1A0� uvw1A ; 0� uvw1A 2 D (A�(q)) ;iii) 0 2 � (A(q)), the resolvent set of A(q);iv) The spetrum � (A(q)) of A(q) onsists only of eigenvalues, � (A(q)) = �p (A(q)) = f�+;�n ; �ng1n=1 where�+;�n = p�n ��r(q)�pr2(q)� 1�, �n = �k�2nCv , with �n = n4�4� , r(q) = �p�2p and f�ng1n=1 are all thepositive solutions of the equation tan � = k1k� . The orresponding set of normalized eigenvetors in Zq isgiven by 8<:0� en�+n en0 1A ; 0� knenkn��n en0 1A ; 0� 00�n1A9=;1n=1 ;where en(x) =  2� ��n + j�+n j2�!1=2 sin(�nx), �n(x) =  k�nCv R �n0 os2(�) d�!1=2 os(�nx) and k2n = �n+j�+n j2�n+j��n j2 .v) The operator A(q) generates an analyti semigroup T (t; q) of negative type whih satis�es kT (t; q)kL(Zq) �e�!(q)t, for t � 0, where !(q), the type of T , is given by!(q) = 8<: min�k�21Cv ; ��22 � ; if �2� � 4min�k�21Cv ; ��22 � �22p�p�2�� 4� ; if �2� > 4:We shall need some notation for ertain interpolation spaes. If X is a Banah spae and p � 1, Lp�(X)will denote the Banah spae of all Bohner measurable mappings u : [0;1) ! X suh that kukpLp�(X) :=R10 ku(t)kpX dtt < 1. If X0 and X1 are two Banah spaes with X0 ontinuously and densely embedded inX1, p � 1 and � 2 (0; 1), we denote by (X0; X1)�;p the spae of averages (or \real" interpolation spae)(X0; X1)�;p := �x 2 X1 ���� 9ui : [0;1)! Xi; i = 0; 1; t��u0 2 Lp�(X0);t1��u1 2 Lp�(X1) and x = u0(t) + u1(t) a.e. � :Endowed with the normkxk(X0;X1)�;p := inf8<:kt��u0kLp�(X0) + kt1��u1kLp�(X1) ������ t��u0 2 Lp�(X0);t1��u1 2 Lp�(X1) andx = u0(t) + u1(t) a.e. 9=; ;(X0; X1)�;p is a Banah spae. In the partiular ase when p = 2 and X0, X1 are Hilbert spaes, we denote(X0; X1)�;2 = [X0; X1℄�.



5Sine 0 2 � (A(q)) and A(q) generates an analyti semigroup T (t; q), the frational Æ-powers (�A(q))Æof �A(q) are well de�ned, losed, linear, invertible operators for any Æ � 0 (see [24, pp 69-75℄). Moreover,(�A(q))�Æ has the representation (�A(q))�Æ = 1�(Æ) Z 10 tÆ�1T (t; q) dt;where the integral onverges in the uniform operator topology for every Æ > 0. Also, the domainD �(�A(q))Æ�endowed with the topology of the norm of the graph of (�A(q))Æ is a Hilbert spae. Sine ((�A(q))Æ is bound-edly invertible this norm is equivalent to the norm kzkq;Æ := (�A(q))Æzq. We shall denote by Zq;Æ theHilbert spae D �(�A(q))Æ� endowed with the k � kq;Æ-norm.Next, we state a few results whih will be needed throughout the rest of this artile. Their proofs anbe found in [29℄.Theorem 2.2. ([29℄) Let q 2 Q, A(q) : D (A(q)) � Zq ! Zq as de�ned by (2.2)-(2.3), 0 < Æ < 1 and Zq;Æas above. Then Zq;Æ = [D (A(q)) ; Zq℄1�Æ, in the sense of an isomorphism.The next lemma shows some relations between the spaes Zq;Æ for di�erent q's.Lemma 2.3. ([29℄) Let Æ 2 (0; 1). Then,i) For any pair q, q� 2 Q the spaes Zq;Æ and Zq�;Æ are isomorphi.ii) Moreover, for any ompat subset QC of Q the norms fk � kq;Æ : q 2 QCg are uniformly equivalent,i.e., there exist onstants m > 0, M > 0, suh that mkzkq;Æ � kzkq�;Æ � Mkzkq;Æ for every pair q,q� 2 QC and all z 2 D �(�A(q))Æ�\D �(�A(q�))Æ�.Consider the following standing hypotheses.(H1) There exist funtionsKf ,Kg 2 L2(0; 1),Kf (x) � 0 a.e.,Kg(x) � 0 a.e., suh that jf(x; t1)� f(x; t2)j �Kf (x) jt1 � t2j and jg(x; t1)� g(x; t2)j � Kg(x) jt1 � t2j for a.e. x 2 (0; 1) and all t1, t2 2 [0; T ℄.(H2) �� 2 H1(0; T ) and �0� is loally Lipshitz ontinuous in (0; T ).Theorem 2.4. ([29℄) Let q 2 Q, 0 < � < 14 and assume that the hypotheses (H1) and (H2) hold. Then,i) for any bounded subset U of [0; T ℄� Zq; 34+� there exists a onstant L = L(q; U; ��; f; g) suh thatkF (q; t1; z1)� F (q; t2; z2)kq � L�jt1 � t2j+ kz1 � z2kq; 34+��for all (t1; z1), (t2; z2) 2 U , i.e., the funtion F (q; t; z) : Q� [0; T ℄�Zq; 34+� ! Zq is loally Lipshitzontinuous in t and z. Moreover, the onstant L an be hosen independent of q on any ompatsubset of Q;ii) for any initial data z0 2 D�(�A(q)) 34+��, there exists t1 = t1(q; z0) > 0 suh that the initial valueproblem (2.1) has a unique lassial solution z(t; q) 2 C ([0; t1) : Zq) \ C1 ((0; t1) : Zq). Moreoverddtz(t; q) 2 C 14��lo ((0; t1℄ : Zq), i.e., ddtz(t; q) is loally H�older ontinuous on (0; t1℄ with exponent14 � �.Finally, the following theorem says that for any ompat subset QC of the admissible parameter set Q,it is possible to �nd a nontrivial ommon interval of existene for all solutions z(t; q), q 2 QC .Theorem 2.5. ([29℄) Let QC be a ompat subset of the admissible parameter set Q, q0 2 QC , z0 2 Zq0;Æ,where 34 < Æ < 1. Let �0; tM (q)� = �0; tM (q; z0)� denote the maximum interval of existene of the solutionz(t; q) with initial ondition z(0; q) = z0. ThentM (QC) := infq2QC tM (q) > 0



63. Continuous Dependene on the Model ParametersIn this setion we show that the mapping q ! z(� ; q) from the spae of admissible parameters Q intothe spae of solutions is ontinuous. More preisely, we show that if fqng1n=1 is a sequene in Q onvergingto q 2 Q, then the sequene fz(t; qn)g1n=1 onverges to z(t; q) in some appropriate sense.Throughout this setion, to simplify the notation we shall denote with An = A(qn); A = A(q); Tn(t) =T (t; qn); T (t) = T (t; q), zn(t) = z(t; qn) and z(t) = z(t; q).We shall need the following lemmas.Lemma 3.1. Let fqng1n=1 be a sequene in Q, qn ! q 2 Q, and let A; An; T; Tn be as above. ThenkAnTn(t)z �AT (t)zkq ! 0 as n!1for every z 2 Zq and t > 0.Proof. Let z 2 Zq . Sine Tn(t), T (t) are analyti semigroups, Tn(t)z, T (t)z, are inD(An), D(A), respetively,8t > 0. From Theorem 3.5 in [28℄ it follows that there exists an angle �, 0 < � < �2 , suh that�� := f0g [ f� 2 C : jarg �j < �2 + �g � �(A) \ 1\n=1 �(An):Now, let �2 < �1 < �2 +� and let � be the path omposed of the two rays re�i�1 ; rei�1 ; 0 � r <1; � orientedso that Im(�) inreases along �. We have the following expresions (see [24℄)AT (t)z = 12�i Z� �e�tR(�;A)z d�; AnTn(t)z = 12�i Z� �e�tR(�;An)z d�;for every z 2 Zq; t > 0, where R(�;A) = (�I �A)�1, R(�;An) = (�I �An)�1.Then AT (t)z �AnTn(t)z = 12�i Z� �e�t (R(�;A)�R(�;An)) z d�: (3.1)By the Hille-Yosida theorem ([24℄)k�e�t (R(�;A)�R(�;An)) zkq � j�jeRe(�)t � 1j�j + Cj�j� kzkq� (1 + C)eRe(�)tkzkq 2 L1(�);where the onstant C appears beause of the uniform equivalene of the norms k � kqn and k � kq. Also forany �xed � 2 �, k (R(�;A)�R(�;An)) zkq ! 0 as n!1. In fat,k (R(�;A)�R(�;An)) zkq = kR(�;An) [(�I �An)R(�;A)� I ℄ zkq= kR(�;An)(A�An)R(�;A)zkq� kR(�;An)kL(Zq)k(A�An)R(�;A)zkqwhih onverges to zero as n goes to in�nity by virtue of the uniform boundedness of kR(�;An)kL(Zq) andthe strong onvergene of An to A (whih follows immediately from the de�nition of An and A, and theonvergene of qn to q).The lemma then follows from (3.1) and the Dominated Convergene Theorem. �Lemma 3.2. Under the same hypotheses of Lemma 3.1(�A)Æ(T (t)� Tn(t))zq ! 0 as n!1for every z 2 Zq, Æ 2 [0; 1℄ and t � 0.Remark. Note that the assertion of Lemma 3.2 ould be easily obtained if (�A)Æ ommuted with Tn(t).However, this is not true sine An does not ommute with A, as it an be easily veri�ed.



7Proof of Lemma 3.2. It suÆes to show the result for Æ = 1. We writekA(T (t)� Tn(t))zk = [AT (t)�AnTn(t) + (I �AA�1n )AnTn(t)℄zq� k(AT (t)�AnTn(t))zkq + I �AA�1n L(Zq) kAnTn(t)zkq :As a onsequene of Lemma 3.1 the �rst term on the right of the above inequality tends to zero as ngoes to in�nity and the sequene fkAnTn(t)zkqg1n=1 is bounded. A straightforward alulation using thede�nition of A(q) shows that for any pair of admissible parameters q; ~q 2 Q , q = (�; Cv ; �; �2; �4; �6; �1; ),~q = (~�; ~Cv ; ~�; ~�2; ~�4; ~�6; ~�1; ~) and any z = 0� uvw1A 2 ZqA(~q)A�1(q)z = 0B� u�~� � � �~~��u00 + �~~� v�Cv~Cv�w 1CA ; (3.2)from whih it follows immediately that kI �AA�1n kL(Zq) ! 0 as n!1. The theorem then follows. �Lemma 3.3. Let QC be a ompat subset of Q. Then for any Æ 2 [0; 1℄ there exists a onstant C dependingonly on Æ and QC suh that (�A(q1))Æ(�A(q2))�ÆL(Zq3 ) � Cfor every q1; q2; q3 2 QC .Proof. From (3.2) it follows that there exists a onstantM depending only onQC suh that kA(~q)A�1(q)zk~q �Mkzk~q for every q; ~q 2 QC ; z 2 Zq . Letting � = A�1(q)z we obtainkA(~q)�k~q �MkA(q)�k~q for all q; ~q 2 QC ; � 2 D(A(q)): (3.3)Sine the k � kq-norms are uniformly equivalent for q 2 QC , it follows from (3.3) and Theorem 2.2 that thenorms k � kq;Æ are also uniformly equivalent for q 2 QC . Thus, for any q1; q2; q3 2 QCk(�A(q1))Æ(�A(q2))�Æzkq3 � C1k(�A(q1))Æ(�A(q2))�Æzkq1= C1k(�A(q2))�Æzkq1;Æ� C1 C2k(�A(q2))�Æzkq2;Æ= C1 C2kzkq2� C1 C2 C3kzkq3:= Ckzkq3 ;where the onstants Ci, i = 1; 2; 3, depend only on QC and Æ. �Remark. Sine Tn(t) is an analyti semigroup of ontrations, by a well known result on semigroup theory([24℄), there exists a onstant ~CÆ independent of n suh that(�An)ÆTn(t)L(Zqn ) � ~CÆtÆ j os�njwhere �n is any angle in (�2 ; �) for whih�(An) � f0g [ f� 2 C : j arg�j � �ng:As we mentioned in the proof of Lemma 3.1, the angle �n above an be hosen independent of n. Hene,there exists a onstant CÆ depending only on Æ suh thatk(�An)ÆTn(t)kL(Zqn ) � CÆtÆ 8n = 1; 2; � � � :Next, we state a lemma whose proof an be found in [15, Lemma 7.1.1℄.



8Lemma 3.4. Suppose L � 0, 0 < Æ < 1 and a(t) is a nonnegative funtion, loally integrable on 0 � t � T .Let u(t) be a real-valued funtion de�ned on [0; T ℄ satisfyingu(t) � a(t) + L Z t0 1(t� s)Æ u(s) dson this interval. Then, there exists a onstant K depending only on Æ suh thatu(t) � a(t) +KL Z t0 a(s)(t� s)Æ ds for 0 � t < T:The following theorem will be essential for the main result of this setion.Theorem 3.5. Let Æ 2 � 34 ; 1�, fqng1n=1 � Q, qn ! q 2 Q and zn(t); z(t) be the solutions orresponding tothe parameters qn and q, respetively, of the IVP (2.1) with initial data z0 2 D �(�A)Æ�, and let [0; t1) bethe maximal interval of existene of z(t). Then, for any t01 < t1 there are onstants N0, D > 0 suh thatzn(t) exists on [0; t01℄ for every n � N0 andkzn(t)kq;Æ � D; 8n � N0; 8t 2 [0; t01℄:Proof. Let Æ 2 � 34 ; 1�, 0 < t01 < t1, and tn1 > 0 be suh that zn(t) exists on [0; tn1 ) for eah n 2 IN. Then, fort 2 [0;minft01; tn1g),z(t) = T (t)z0 + Z t0 T (t� s)F (q; s; z(s)) ds; zn(t) = Tn(t)z0 + Z t0 Tn(t� s)F (qn; s; zn(s)) ds:Consequently,kz(t)� zn(t)kq;Æ = k(�A)Æz(t)� (�A)Æzn(t)kq� (�A)Æ (T (t)� Tn(t)) z0q+ Z t0 (�A)ÆT (t� s)F (q; s; z(s))� (�A)ÆTn(t� s)F (qn; s; zn(s)) dsq� (�A)Æ (T (t)� Tn(t)) z0q+ Z to (�A)ÆT (t� s)F (q; s; z(s))� (�A)ÆTn(t� s)F (q; s; z(s)) dsq+ Z t0 (�A)ÆTn(t� s) [F (q; s; z(s))� F (qn; s; z(s))℄ dsq+ Z t0 (�A)ÆTn(t� s) [F (qn; s; z(s))� F (qn; s; zn(s))℄ dsq_=In1 (t) + In2 (t) + In3 (t) + In4 (t):Note that, even when this last inequality holds only for t in [0;minft01; tn1g), the real valued funtions In1 (t),In2 (t) and In3 (t) are well de�ned on [0; t01℄.The following estimates hold:In3 (t) � Z t0 k(�A)ÆTn(t� s)kL(Zq)kF (q; s; z(s))� F (qn; s; z(s))kq ds� C1 Z t0 k(�An)ÆTn(t� s)kL(Zqn )kF (q; s; z(s))� F (qn; s; z(s))kq ds� C1 Z t0 CÆ(t� s)Æ kF (q; s; z(s))� F (qn; s; z(s))kq ds:The seond and third inequality follow from Lemma 3.3 and the Remark previous to Lemma 3.4, respetively.Now, kF (q; s; z(s))�F (qn; s; z(s))kq ! 0 as n!1 and there exists a onstant C2 independent of n suh that



9kF (q; s; z(s))� F (qn; s; z(s))kq � C2 for every s 2 [0; t01℄. These assertions follow easily from the ontinuityof z(s) and the de�nition of the funtion F . Therefore, In3 (t) ! 0 as n ! 1 on [0; t01℄ by the DominatedConvergene Theorem and also In3 (t) � C1C2CÆ1� Æ t1�Æ , 8n 2 IN, 8t 2 [0; t01℄.To estimate In2 (t), observe thatIn2 (t) � Z t0 k(�A)Æ (T (t� s)� Tn(t� s))F (q; s; z(s))kq ds:Now, kF (q; s; z(s))kq is bounded on [0; t01℄, say kF (q; s; z(s))kq � C3, 8t 2 [0; t01℄ andk(�A)Æ(T (t� s)�Tn(t� s))kL(Zq)� k(�A)ÆT (t� s)kL(Zq) + k(�A)ÆTn(t� s)kL(Zq)� k(�A)ÆT (t� s)kL(Zq) + Ck(�An)ÆTn(t� s)kL(Zqn )� CÆ(t� s)Æ + C CÆ(t� s)Æ _= C4(t� s)Æ :On the other hand, for any s 2 [0; t01℄ we have k(�A)Æ (T (t� s)� Tn(t� s))F (q; s; z(s))kq ! 0 asn ! 1 by Lemma 3.2. Therefore In2 (t) ! 0 as n ! 1 by the Dominated Convergene Theorem and alsoIn2 (t) � C3C41� Æ t1�Æ, 8n 2 IN, 8t 2 [0; t01℄.In regard to In1 (t) observe that by Lemma 3.2, In1 (t)! 0 as n!1 and alsoIn1 (t) = (�A)Æ (Tn(t)� T (t)) z0q= (�A)Æ(�An)�Æ(�An)ÆTn(t)z0 � (�A)ÆT (t)z0q� C Tn(t)(�An)Æz0q + T (t)(�A)Æz0q� C kTn(t)kL(Zq) C (�A)Æz0q + kT (t)kL(Zq) (�A)Æz0q� C5 (�A)Æz0q ;where we have used the fat that z0 2 D �(�A)Æ�.Similarly, In4 (t) � Z t0 k(�A)ÆTn(t� s)kL(Zq)kF (qn; s; z(s))� F (qn; s; zn(s))kq ds� C6 Z t0 1(t� s)Æ kF (qn; s; z(s))� F (qn; s; zn(s))kq ds:From the above estimates on In1 (t), In2 (t), In3 (t) and In4 (t),kz(t)� zn(t)kq;Æ � �n(t) + C6 Z t0 1(t� s)Æ kF (qn; s; z(s))� F (qn; s; zn(s))kq ds (3.4)for every t 2 [0;minft01; tn1g), where, for all t 2 [0; t01℄, �n(t) := In1 (t) + In2 (t) + In3 (t) satis�es 0 � �n(t) � C7for all n 2 IN and �n(t)! 0 as n!1. In partiular, R t010 �n(t) dt! 0 as n!1.Let K = K(Æ) be as in Lemma 3.4 and let us de�ne ~K := C7 + C6C7K and M := sup0�t�t01 kz(t)kq;Æ.From the ontinuity of z(t) it follows that M < 1 sine t01 < t1. Sine z(0) = zn(0) = z0, for eah n 2 INthere exists Æn > 0 suh that kzn(t)kq;Æ � M + 2 ~K for all t 2 [0; Æn℄. Let L be the Lipshitz onstant ofTheorem 2.4(i) for F , orresponding to the set U := [0; t01℄ � nkzkq;Æ �M + 2 ~Ko, for q and all the qn's.Then, from (3.4) and Lemma 3.4, we havekzn(t)� z(t)kq;Æ � fn(t) on 0 � t � Æn; (3.5)where fn(t) := �n(t) + C6LK Z t0 �n(s)(t� s)Æ ds, for t 2 [0; t01℄.



10Now, Z t0 �n(s)(t� s)Æ ds � Z t0 C7(t� s)Æ ds= C7 Z t0 1sÆ ds= C71� Æ t1�Æ :Choosing � = �(L) > 0 suÆiently small so that t1�Æ � 1� Æ2L for every t 2 [0; �℄, it follows thatZ t0 �n(s)(t� s)Æ ds � C72L for every t 2 [0; �℄: (3.6)On the other hand, if � < t � t01Z t0 �n(s)(t� s)Æ ds = Z t0 �n(t� s)sÆ ds= Z �0 �n(t� s)sÆ ds+ Z t� �n(t� s)sÆ ds� C71� Æ �1�Æ + Z t� �n(t� s)�Æ ds� C72L + 1�Æ Z t0 �n(t� s) ds� C72L + 1�Æ Z t010 �n(s) ds:Hene, sine R t010 �n(s) ds! 0, there exists N0 suh thatZ t0 �n(s)(t� s)Æ ds � C72L + C72L = C7L 8t 2 [�; t01℄ and n � N0: (3.7)By virtue of (3.6) and (3.7) one hasfn(t) � C7 + C6C7K = ~K 8t 2 [0; t01℄ and n � N0: (3.8)Consequently, from (3.5) and (3.8),kzn(t)� z(t)kq;Æ � ~K 8n � N0 and t 2 [0; Æn℄;whih implies kzn(t)kq;Æ �M + ~K 8n � N0 and t 2 [0; Æn℄:Finally, let n � N0 be �xed. Then zn(t) exists on [0; t01℄ and for t 2 [0; t01℄, kzn(t)kq;Æ �M +2 ~K. In fat,suppose, on the ontrary, that there exists t� < t01 suh that kzn(t�)kq;Æ =M+2 ~K and kzn(t)kq;Æ < M+2 ~Kfor 0 < t < t�. Then, from (3.5) kzn(t)� z(t)kq;Æ � fn(t) � ~K on [0; t�) and therefore kzn(t)kq;Æ � M + ~Kon [0; t�). By the ontinuity of zn(t), we must have kzn(t�)kq;Æ � M + ~K, whih ontradits kzn(t�)kq;Æ =M + 2 ~K. The theorem then follows by taking D =M + 2 ~K. �Theorem 3.6. (Parameter Continuity) Under the same hypotheses of Theorem 3.5kzn(t)� z(t)kq;Æ ! 0; as n!1



11for every t 2 [0; t1).Proof. Let Æ 2 � 34 ; 1� and t01 < t1. By Theorem 3.5 there exist onstants N0 2 IN and D > 0 suh that forevery n � N0, zn(t) exists on [0; t01℄ and satis�es kzn(t)kq;Æ � D on that interval. Following the same stepsof Theorem 3.5 we �nd that for every t 2 [0; t01℄ and n � N0kz(t)� zn(t)kq;Æ � �n(t) + C6 Z t0 1(t� s)Æ kF (qn; s; z(s))� F (qn; s; zn(s))kq ds� �n(t) + LC6 Z t0 1(t� s)Æ kz(s)� zn(s)kq;Æ dswhere 0 � �n(t) � C7 and �n(t) ! 0 as n ! 1 for every t 2 [0; t01℄. In the last inequality we have usedthe fat that F is loally Lipshitz ontinuous and kzn(t)kq;Æ � D, 8n � N0, 8t 2 [0; t01℄, as it was shown inTheorem 3.5.Hene, by Lemma 3.4, there exists K > 0 suh thatkz(t)� zn(t)kq;Æ � �n(t) +KLC6 Z t0 �n(s)(t� s)Æ ds �! 0 as n!1 8t 2 [0; t01℄:Sine t01 is arbitrary, the theorem follows. �4. Parameter Identi�abilityAs we mentioned in the introdution, the parameter identi�ability is an important issue when solvingID problems. Roughly speaking, the parameter identi�ability an be thought of as the ontinuity and loalinvertibility of the mapping q �! z(� ; q) from the spaeQ of admissible parameters into the spae of solutions(see [1℄). Following are two results on this matter.Theorem 4.1. Let Æ 2 � 34 ; 1�, q = (�; Cv; �; ; �2; �4; �6; �1) 2 Q, and ~q = (~�; ~Cv; ~�; ~; ~�2; ~�4; ~�6; ~�1) 2 Qwith � = ~�, Cv = ~Cv, � = ~�, and  = ~. Let z0(x) = 0� u0(x)v0(x)w0(x)1A 2 D �(�A(q))Æ� and suppose that thesolutions z(t; q) and z(t; ~q) of (2.1) oinide on T1 � t � T2 for some 0 � T1 < T2. Assume further thatz(t; q) = 0� u(� ; t)v(� ; t)w(� ; t)1A is suh that v(� ; t�) 6� 0 for some t� 2 (T1; T2). Then q = ~q.Remark. Note that the hypotheses of this theorem are satis�ed if T1 = 0 and the initial ondition z0 =0� u0v0w01A is hosen suh that v0 6� 0.Proof. Sine v(� ; t�) 6� 0 and v(0; t�) = v(1; t�) = 0 there exists x̂ 2 
 suh that vx(x̂; t�) 6= 0. By ontinuityvx(x̂; t) 6= 0 on t� � � < t < t� + � for some � > 0. Given that vx = uxt there must exist t̂ 2 (t� � �; t� + �)suh that ux(x̂; t̂) 6= 0: (4.1)On the other hand,_z(t; q) = A(q)z(t; q) + F (q; t; z(t; q)) and _z(t; ~q) = A(~q)z(t; ~q) + F (~q; t; z(t; ~q)) 8t 2 [T1; T2℄: (4.2)But, � = ~�, Cv = ~Cv , � = ~�,  = ~ imply A(q) = A(~q) sine the operator A(q) does not depend on any ofthe rest of the variables in q. Thus, sine z(t; q) = z(t; ~q) 8t 2 [T1; T2℄ equation (4.2) implyF (q; t; z(t; q)) = F (~q; t; z(t; ~q)) 8t 2 [T1; T2℄;



12and, using the de�nition of F (q; t; z),��x [2�2(w(x; t) + L(x; t)� �1)ux(x; t)� 4�4ux(x; t)3 + 6�6ux(x; t)5�= ��x h2~�2(w(x; t) + L(x; t)� ~�1)ux(x; t) � 4~�4ux(x; t)3 + 6~�6ux(x; t)5i (4.3a)and �2(w(x; t) + L(x; t))ux(x; t)vx(x; t) = ~�2(w(x; t) + L(x; t))ux(x; t)vx(x; t) (4.3b)for all x 2 
, t 2 [T1; T2℄.From (4.3b) it follows that(�2 � ~�2)�(x; t)ux(x; t)vx(x; t) = 0; 8x 2 
; t 2 [T1; T2℄where �(x; t) = w(x; t)+L(x; t) = w(x; t)+ ��(t) os(2�x). Sine ux(x̂; t̂)vx(x̂; t̂) 6= 0 and � > 0, we onludethat �2 = ~�2. Consequently, equation (4.3a) now readsuxx(x; t)�2�2(�1 � ~�1) + 12(�4 � ~�4)ux(x; t)2 � 30(�6 � ~�6)ux(x; t)4� = 0 (4.4)8x 2 
; t 2 [T1; T2℄.Now, if uxx(x; t̂) were identially equal to zero on 
 then, using the boundary onditions, we would haveu(� ; t̂) � 0 and ux(� ; t̂) � 0 whih obviously ontradits (4.1). Therefore, there must exist a; b, 0 < a < b < 1suh that uxx(x; t̂) 6= 0 for a < x < b, whih implies ux(x; t̂) annot be onstant on (a; b). Therefore thefuntions 1, ux(x; t̂)2 and ux(x; t̂)4 are linearly independent as funtions of x on (a; b). Hene, from (4.4) weobtain �4 = ~�4, �6 = ~�6 and �1 = ~�1, and the theorem follows. �Under slightly more restritive hypotheses as those of Theorem 4.1, it is possible to obtain one-to-onenessalso with respet to the parameter . The following theorem shows this result.Theorem 4.2. Let Æ 2 � 34 ; 1�, q; ~q 2 Q with � = ~�, Cv = ~Cv, � = ~�; z0(x) = 0� u0(x)v0(x)w0(x)1A 2 D �(�A(q)Æ)�and suppose that the solutions z(t; q) and z(t; ~q) of (2.1) oinide on T1 � t � T2 for some 0 � T1 < T2.Assume further that v(�; t̂) 6� 0 for some t̂ 2 [T1; T2℄. If, in addition either of the following two onditionshold, then q = ~q.(i) There exists t� 2 [T1; T2℄ suh that uxxxx(0; t�) 6= 0 or uxxxx(1; t�) 6= 0.(ii) There exists t� 2 [T1; T2℄ suh that the funtions uxxxx(�; t�), uxx(�; t�), uxx(�; t�)ux(�; t�)2, uxx(�; t�)ux(�; t�)4are linearly independent as funtions of x on 
.Proof. Following the same steps as in Theorem 4.1, the funtions u(x; t), v(x; t), �(x; t) must satisfy�uxxxx(x; t) + ��x �2�2(�(x; t)� �1)ux(x; t) � 4�4ux(x; t)3 + 6�6ux(x; t)5�= ~�uxxxx(x; t) + ��x h2~�2(�(x; t)� ~�1)ux(x; t) � 4~�4ux(x; t)3 + 6~�6ux(x; t)5i (4.5a)and (�2 � ~�2)�(x; t)ux(x; t)vx(x; t) = 0; 8x 2 
 and t 2 [T1; T2℄ : (4.5b)As in Theorem 4.1, equation (4.5b) implies �2 = ~�2 and onsequently (4.5a) yields( � ~)� uxxxx(x; t)+ uxx(x; t)�2�2(�1 � ~�1) + 12(�4 � ~�4)ux(x; t)2 � 30(�6 � ~�6)ux(x; t)4� = 0 (4.6)8x 2 
; t 2 [T1; T2℄.



13Suppose ondition (i) holds and wlog assume uxxxx(0; t�) 6= 0. Then, evaluating equation (4.6) at x = 0and t = t� yields (�~)� uxxxx(0; t�) = 0, whih implies  = ~. Equation (4.6) now takes the formuxx(x; t)�2�2(�1 � ~�1) + 12(�4 � ~�4)ux(x; t)2 � 30(�6 � ~�6)ux(x; t)4� = 08x 2 
; 8t 2 [T1; T2℄. Following the same reasoning as in Theorem 4.1, the above identity implies �1 = ~�1,�4 = ~�4, �6 = ~�6.On the other hand, if ondition (ii) holds then the result follows immediately from equation (4.6) andthe linear independene of the funtions uxxxx(�; t�), uxx(�; t�), uxx(�; t�)ux(�; t�)2 and uxx(�; t�)ux(�; t�)4. �Theorems 4.1 and 4.2 together with the ontinuity results of setion 3 imply, under the appropriatehypotheses, the identi�ability of problem (1.1) with respet to the parameters that de�ne the free energy ofthe system.5. ConlusionsIn this paper we have shown that the solutions of the IBVP (1.1), with free energy potential 	 in theLandau-Ginzburg form (1.2), depend ontinuously on the parameters �; Cv ; �; �2; �4; �6; �1 and . In par-tiular, we have shown that if fqn = (�n; Cv;n; �n; �2;n;�4;n; �6;n; �1;n; n)g1n=1 is a sequene of admissible parameters onverging to the admissible parameter q,then not only z(t; qn) ! z(t; q) in the norm of Zq, but also in the stronger k � kq;Æ-norm (Æ = 34 + �).We have also shown that under rather weak hypotheses, the free energy potential 	 as given by (1.2) isidenti�able from the IBVP (1.1). More preisely, if the onditions of Theorem 4.2 hold, then the mapping(�2; �4; �6; �1; ) �! z(� ; q) is ontinuous and invertible. Although this is a partial result sine it does notimply the invertibility of the mapping q �! z(� ; q), it is appropriate to emphasize its importane from apratial point of view in the sense that the parameters �2, �4, �6, �1 and  are the only non-physialparameters appearing in the model. Referenes[1℄ BANKS, H. T., and KUNISCH, K., \Estimation Tehniques for Distributed Parameters Systems", Birkh�auser, 1989.[2℄ BENSOUSSAN A., DA PRATO G., DELFOUR M. and MITTER S., \Representation and Control of In�nite Dimen-sional Sytems", Vol. I Birkh�auser, 1992.[3℄ BURNS, J. A. and SPIES, R. D., \Finite Element Approximation of a Shape Memory Alloy", Proeedings of theADPA/AIAA/ASME/SPIE Conferene on Ative Materials and Adaptive Strutures, Alexandria, Virginia, 1991.[4℄ BURNS, J. A. and SPIES, R. D., \Modelling for Control of Shape Memory Alloys", 30th IEEE Conferene on Deisionand Control, Brighton, England, 1991.[5℄ BURNS, J. A. and SPIES, R. D., \ A Numerial Study of Parameter Sensitivities in Landau-Ginzburg Models ofPhase Transitions in Shape Memory Alloys", Journal of Intelligent Material Systems and Strutures, vol. 5, May 1994,pp 321-332.[6℄ CHEN, G. and RUSSELL, D. L., \A Mathematial Model for Linear Elasti Systems with Strutural Damping",Quarterly of Applied Mathematis, January 1982, pp 433-454.[7℄ CHEN, S. and TRIGGIANI, R., \Proof of Extensions of Two Conjetures on Strutural Damping for Elasti Systems",Pai� Journal of Mathematis, Vol. 136, No 1, 1989, pp 15-55.[8℄ DAFERMOS, C. M., \Global Smooth Solutions to the Initial-Boundary Value Problem for the Equations of One-Dimensional Nonlinear Thermovisoelastiity", Siam J. Math. Anal., Vol. 13, No 3, pp 397-408, May 1982.[9℄ DAFERMOS, C. M. and HSIAO, L., \Global Smooth Thermomehanial Proesses in One-Dimensional Thermovis-oelastiity", Nonlinear Anal. Theory Methods Appl., Vol. 6, 1982, pp 435-454.[10℄ DELAEY, L. and CHANDRASEKARAN, M., \Proeeding, International Conferene on Martensiti Transforma-tions", Les Editions de Physique, Les Ulis, 1984.[11℄ DELAEY, L., KRISHNAN, R. V., TAS, H. and WARLIMONT, H., \Thermoelastiity, Pseudoelastiity and theMemory E�ets Assoiated with Martensiti Transformations", Journal of Materials Siene, Vol. 9, 1974, pp 1521-1555.[12℄ FALK, F., \One Dimensional Model of Shape Memory Alloys", Arh. Meh., 35, pp 63-84, Warszawa, (1983).
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