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2transitions (martensiti transformations). Equations (1.1a) and (1.1b) reet the onservation of linearmomentum and energy, respetively. The funtions and variables present in system (1.1a-e) have thefollowing physial meaning: u(x; t) = transverse displaement, �(x; t) = absolute temperature, Cv =spei� heat, k = thermal ondutivity oeÆient, � = visosity onstant, f(x; t) = distributed loads(input), g(x; t) = distributed heat soures (input), T = presribed �nal time, �2, �4, �6, �1,  arepositive onstants -depending on the material being onsidered- appearing in the free energy potentialwhih is taken in the Landau-Ginzburg form	(�; �x; �) = �Cv� ln� ��2�+ Cv� + C + �2(� � �1)�2 � �4�4 + �6�6 + 2 �2x (1.2)where � = ux is the linearized shear strain. The onstants �1 and �2 in (1.2) are two ritial temperaturesand C represents a �xed energy referene level. The body is assumed to be a simply supported unit-lengthbeam thermally insulated at both ends.The PDE's in (1.1a-b) are oupled and nonlinear due to the terms oming from the partial derivativesof the free energy. The �rst equation an be regarded as a nonlinear hyperboli equation in u while theseond is a nonlinear paraboli equation in � (for a detailed derivation of equations (1.1a-b) see [31℄).Although there are several representations for the free energy potential of pseudoelasti materials(see for instane [13℄, [14℄, [29℄, [30℄, [34℄) the form (1.2) seems to be the simplest one whih is ableto reprodue several phenomena -suh as hysteresis, shape memory and superelastiity- observed in realmaterials under di�erent external thermomehanial ations. For values of � lose to �1, 	 is a nononvexfuntion of � and the stress-strain laws obtained from (1.2) are strongly temperature-dependent (seeFigure 1). At low temperatures these urves exhibit an elasto-plasti behavior at small loads and a seondelasti branh at large loads, whih permits the body to withstand fores beyond the plasti yield, afterwhih, subsequent unloading produes residual deformation. In the intermediate temperature range thebehavior is superelasti, also alled pseudoelasti. Here, a plasti yield is also found. However, loadingbeyond this plasti yield followed by omplete unloading does not lead to residual deformation beauseof the existene of an intermediate elasti branh whih the body reahes by reeping bak after theload falls beyond a ertain ritial value. Finally, in the high temperature range the behavior is almostlinearly elasti with higher modulus of elastiity for higher temperatures. Hysteresis loops are observedin the stress-strain urves at low and intermediate temperatures (see [31℄ and the referenes therein).Due to their unique harateristis SMA have already found a broad spetrum of appliations amongwhih we �nd orthodonti and other dental devies ([4℄), heat engines, temperature swithes and fuses,pipe oupling devies ([16℄), hybrid omposites ([27℄) and several interesting appliations in Mediine([10℄, [16℄, [28℄).Sine the disovery of NiTinol (a Nikel-Titanium alloy) by Buehler ([20℄) in 1962 several mathe-matial models were proposed and studied ([1℄, [2℄, [3℄, [13℄, [14℄, [19℄, [21℄, [22℄, [23℄, [35℄). Most of thismodels, however, were stati and did not take into aount the strong oupling between the mehanialand thermal properties, whih is one of the distinguishing features possessed by SMA. It was not untilreent years that mathematial models were able to deal with most of the unusual properties of SMAand, at the same time, to allow for the inlusion of boundary and distributed external ations that anbe used as ontrol variables ([24℄, [25℄, [29℄, [30℄, [33℄, [34℄, [31℄). An extensive aount on the reentadvanes in the mathematial modelling of SMA an be found in [6℄. This artile follows the approahintrodued in [31℄.2. State-Spae Formulation and PreliminariesIn this setion we shall formulate the initial-boundary value problem (1.1a-e) as an abstrat semi-linear Cauhy problem in an appropriate Hilbert spae and briey reall some preliminaries whih willbe needed later on.We de�ne the admissible parameter set Q := �q = (�; k; Cv ; �; �2; �4; �6; �1; )jq 2 R9+	, and forq 2 Q the state spae Zq as the Hilbert spae H10 (0; 1) \ H2(0; 1) � L2(0; 1) � L2(0; 1) with the innerprodut *0�uv�1A ;0� ~u~v~�1A+q :=  Z 10 u00(x)~u00(x) dx+ � Z 10 v(x)~v(x) dx+ Cvk Z 10 �(x)~�(x) dx:



3Next, for q 2 Q, the operator Aq on Zq is de�ned byD(Aq) = 8<:0�uv�1A 2 Zq ������ u 2 H4(0; 1); u(0) = u(1) = u00(0) = u00(1) = 0v 2 H10 (0; 1) \H2(0; 1)� 2 H2(0; 1); �0(0) = �0(1) = 0 9=;and for z = 0�uv�1A 2 D(Aq), Aq0�uv�1A := 0� 0 I 0��D4 �D2 00 0 kCvD21A0�uv�1Awhere Dn := �n�xn .We assume that the funtions f(x; t), g(x; t) satisfy the following hypothesis.(H1). For eah �xed t � 0, the funtions f(x; t), g(x; t) are in L2(0; 1) and there exist nonnegativefuntions Kf (x), Kg(x) 2 L2(0; 1) suh thatjf(x; t1)� f(x; t2)j � Kf (x)jt1 � t2j; jg(x; t1)� g(x; t2)j � Kg(x)jt1 � t2jfor all x 2 (0; 1), t1; t2 2 [0; T ℄.We also de�ne z0(x) = 0�u0(x)v0(x)�0(x)1A and F (q; t; z) : Q� R+0 � Zq ! Zq byF (q; t; z) = 0� 0f2(q; t; z)f3(q; t; z)1A ;where �f2(q; t; z)(x) = f(x; t) + �2�2(� � �1)ux � 4�4u3x + 6�6u5x�x ;Cvf3(q; t; z)(x) = g(x; t) + 2�2�uxuxt + ��u2xt:With the above notation, the IBVP (1.1a-e) an be formally written as the following semilinear Cauhyproblem in the Hilbert spae Zq:(P)� ddtz(t) = Aqz(t) + F (q; t; z); 0 � t � Tz(0) = z0 (2.1)The following results an be easily derived from theorems 3.7 and 3.11 in [31℄ with only slightmodi�ations in order to take into aount for the slightly di�erent boundary onditions being onsideredhere. Sine the modi�ations needed are trivial and not important for the goals pursued by this artile,we do not give details here.Theorem 2.1. ([31℄) Let q 2 Q, Aq : D(Aq) � Zq ! Zq as previously de�ned. Theni) Aq is dissipative;ii) The adjoint A�q of Aq is also dissipative and is given by D(A�q) = D(Aq),Aq0�uv�1A := 0� 0 �I 0�D4 �D2 00 0 kCvD21A0�uv�1Aiii) The operator Aq has pure point spetrum �p(Aq) given by�p(Aq) = ��+n	1n=1 [ ���n 	1n=1 [ f�ng1n=0 ;



4 where �+;�n = p�n ��r(q)�pr2(q)� 1� ; �n = � kCv n2�2and �n = n4�4� ; r(q) = �p�2p :The orresponding normalized eigenvetors in Zq are, respetively,0� en(x)�+n en(x)0 1An=1;2;��� ; 0� knen(x)kn��n en(x)0 1An=1;2;��� ; 0� 00�n(x)1An=0;1;��� ;where k2n = �n + j�+n j2�n + j��n j2 ; en(x) = � 2�(�n + j�+n j2)�1=2 sin(�nx); n = 1; 2; � � � ;�0(x) = � kCv�1=2 ; �n(x) = � 2kCv�1=2 os(�nx); n = 1; 2; � � � ;iv) The operator Aq generates an analyti semigroup of ontrations Tq(t) on Zq.Theorem 2.2. ([31℄) (Loal existene of solutions) Let q 2 Q and Aq as de�ned above. Then for anyinitial data z0 2 D(Aq) there exists t1 = t1(z0) suh that the IVP (P) has a unique lassial solutionzq(t) 2 C ([0; t1) : Zq) \ C1 ((0; t1) : Zq).It will be useful to introdue some notation for ertain interpolation spaes. If X is a Banah spaeand p � 1, Lp�(X) will denote the Banah spae of all Bohner measurable mappings u : [0;1) ! Xsuh that kukpLp�(X) := R10 ku(t)kpX dtt < 1. If X0, X1 are two Banah spaes with X0 ontinuously anddensely embedded in X1, p � 1 and � 2 (0; 1), we denote with (X0; X1)�;p the spae of averages, -or\real" interpolation spae-(X0; X1)�;p := �x 2 X1 ���� 9ui : [0;1)! Xi; i = 0; 1; t��u0 2 Lp�(X0);t1��u1 2 Lp�(X1) and x = u0(t) + u1(t) a.e. � :Endowed with the normkxk(X0;X1)�;p := inf8<:kt��u0kLp�(X0) + kt1��u1kLp�(X1) ������ t��u0 2 Lp�(X0);t1��u1 2 Lp�(X1) andx = u0(t) + u1(t) a.e. 9=; ;(X0; X1)�;p is a Banah spae. In the partiular ase when p = 2 and X0, X1 are Hilbert spaes, we shalldenote (X0; X1)�;2 = [X0; X1℄� (see [5℄).If B is the in�nitesimal generator of an analyti semigroup S(t) on a Banah spae X suh that0 belongs to the resolvent set of B, �(B), then the frational Æ-powers (�B)Æ are well de�ned, losed,linear, invertible operators for any Æ > 0 (see [26, pp. 69-75℄). Moreover, D �(�B)Æ� endowed with thetopology of the graph norm kxkÆ := (�B)Æx is a Banah spae. The following result an be found in[5℄.Theorem 2.3. ([5℄) Let X be a Hilbert spae and B the in�nitesimal generator of an analyti semigroupon X suh that 0 2 �(B). Then, for any Æ 2 (0; 1), the Hilbert Spae �D �(�B)Æ� ; k � kÆ� is isomorphito the interpolation spae [D(B); X ℄1�Æ.From Theorem 2.1, it follows that f� 2 C : Re(�) > 0g � �(Aq). Hene the frational powers ofI�Aq are well de�ned, losed, linear, invertible operators and, for any Æ 2 (0; 1), D �(I �Aq)Æ� endowedwith the norm kzkÆ := (I �Aq)Æzq is a Banah spae, whih we denote with Zq;Æ. This spae oinideswith the interpolation spae [D(Aq); Zq℄1�Æ . The following result onerning the regularity of F wasproved in [32℄.



5Theorem 2.4. ([32℄) Assume (H1) holds. Let q 2 Q, 0 < � < 14 and U a bounded subset of [0; T ℄ �D �(I �Aq) 34+��. Then there exists a onstant L > 0 depending on U , � and q, suh thatkF (q; t1; z1)� F (q; t2; z2)kq � L�jt1 � t2j+ kz1 � z2k 34+��for every (t1; z1); (t2; z2) 2 U . Moreover, the onstant L an be hosen independent of q on ompatsubsets of Q.Observation. The operator I �Aq above an be replaed by �I � Aq for any � > 0 without hangingany of the assertions. The hoie � = 1 has no partiular meaning.3. Spetral ApproximationsIn this setion �nite-dimensional approximating solutions to problem (P) are de�ned and theironvergene to the exat solution is shown.In the sequel the parameter q 2 Q will be �xed, so, wherever it is lear from the ontext, we shallsuppress it from the notation.For �xed N 2 N let�Nn (x) := 0� sin�nx�+n sin�nx0 1A ; �NN+n(x) := 0� sin�nx��n sin�nx0 1A ; �N2N+n(x) := 0� 00os�(n� 1)x1A ;for n = 1; 2; � � � ; N , where �+;�n are as in Theorem 2.1, and let us de�ne ZN to be the span of �̂N :=��Nn (x)	3Nn=1 endowed with the Z-norm. Then 1[N=1ZN is dense in Z and, sine the �Nn 's are eigenvetorsof A, it follows that ZN is invariant under A. Note also that ZN is itself a Hilbert spae.Next, we de�ne the �nite-dimensional approximating problem �PN� in ZN , as follows.�PN�� ddtzN (t) = ANzN(t) + FN (t; zN (t)); 0 � t � TzN(0) = PNz0where PN : Z ! ZN is the orthogonal projetion of Z onto ZN , AN is the restrition of A to ZN andFN (t; z) := PNF (t; z). The density of 1[N=1ZN in Z implies the strong onvergene of PN to the identity.Moreover, a straightforward alulation using the spetral deomposition of A shows that 1[N=1ZN is alsodense in Zq;Æ and PNz � zÆ ! 0, 8z 2 Zq;Æ .Sine ZN has �nite dimension, the operator AN on ZN is bounded and linear, and a fortiori, itgenerates a uniformly ontinuous semigroup of bounded linear operators TN(t) on ZN .We have the following result on loal existene of solutions of problem �PN�.Theorem 3.1. Let z0 2 Z. Then, for any positive integer N, there exists tN1 > 0 suh that �PN� has aunique solution on [0; tN1 ).Proof. Let Æ 2 ( 34 ; 1), z0 2 Z and N 2 N be �xed. By virtue of Theorem 2.4, there exists a onstantL(r; t0) suh that for any r > 0 and t0 > 0kF (t; z)� F (s; w)kZ � L(r; t0) �jt� sj+ k(I �A)Æ(z � w)kZ�for every t; s 2 [0; t0℄ and z; w 2 D �(I �A)Æ� with kzkÆ � r, kwkÆ � r. Then, for every t; s 2 [0; t0℄, andz; w 2 ZN with kzkÆ � r, kwkÆ � r we havekFN (t; z)� FN (s; w)kZN = PN (F (t; z)� F (s; w))Z� kF (t; z)� F (s; w)kZ� L(r; t0) �jt� sj+ k(I �A)Æ(z � w)kZ�= L(r; t0) (jt� sj+ kz � wkÆ)� L(r; t0)C(Æ;N) (jt� sj+ kz � wkZN )



6where the onstant C(Æ;N) appears beause of the equivalene of the norms in ZN .Hene, the mapping (t; z) ! ANz + FN (t; z) is loally Lipshitz ontinuous from [0; T ℄� ZN intoZN and therefore there must exist tN1 > 0 suh that problem �PN� has a unique solution on [0; tN1 ). �The following result relates the semigroups T (t) and TN(t).Lemma 3.2. Let T (t), TN(t), A, AN , Z and ZN be as above and let R(�;A) denote the resolvent of Aat �, R(�;A) := (�I �A)�1. Theni) for every � 2 �(A), the spae ZN is invariant under R(�;A);ii) the restrition of T (t) to ZN oinides with TN(t) for every t � 0, i.e.T (t)jZN = TN(t) 8t � 0:Proof. i) Let � 2 �(A) and � be an element of the basis �̂N of ZN and de�ne z := R(�;A)�. Then z isan eigenvetor of A orresponding to the same eigenvalue � of �. In fat, (�I �A)Az = A� = ��, whihimplies Az = R(�;A)�� = �z. Sine all the eigenvalues of A are simple, z must be a onstant multipleof � and therefore z 2 ZN . Part i) then follows by the linearity of R(�;A).ii) Sine ZN is invariant under A, the operator ~AN , the part of A in ZN , de�ned byD( ~AN ) := �z 2 D(A) \ ZN : Az 2 ZN	~ANz := Az; z 2 D � ~AN� ;oinides with AN , the restrition of A to ZN . Hene ~AN generates a uniformly ontinuous semigroupon ZN and by part i), ZN is invariant under R(�;A) for every � with Re � > 0. By Theorem 4.5.5in [26℄ it follows that ~AN = AN is the in�nitesimal generator of the restrition of T (t), the semigroupgenerated by A, to ZN . �We shall need the following generalization of Gronwall's Lemma for singular kernels whose proofan be found in [17, Lemma 7.1.1℄.Lemma 3.3. ([17℄) Let a(t) be a nonnegative, loally integrable funtion on 0 � t � T , L � 0 and0 < Æ < 1. Then, there exists a onstant K = K(Æ) suh that every funtion u satisfyingu(t) � a(t) + L Z t0 1(t� s)Æ u(s) dson 0 � t � T , also satis�esu(t) � a(t) +KL Z t0 a(s)(t� s)Æ ds; for 0 � t < T:We de�ne the operator AI := A� I with D(AI ) = D(A). From the properties of A it follows easilythat AI generates an exponentially stable analyti semigroup TI(t). Moreover, TI(t) = e�tT (t). Also,sine 0 2 �(AI ), the frational powers (�AI)Æ are well de�ned for any Æ 2 (0; 1).We now proeed to state and prove our main result about the onvergene of the approximatingsolutions.Theorem 3.4. Let Æ 2 � 34 ; 1�, z0 2 D �(�AI)Æ� and suppose zN(t), z(t) are solutions of �PN� and (P),respetively, and let [0; t1) be the maximal interval of existene of z(t). Then, for any t01 < t1 there existsa onstant N0 suh that zN(t) exists on [0; t01℄ for every N � N0 and zN(t) onverges to z(t) in the normof Z for every t 2 [0; t01℄. Moreover, the onvergene holds in the norm of the graph of (�AI)Æ.Proof. Let Æ 2 � 34 ; 1�, t01 < t1 and for eah N 2 N let tN1 > 0 be suh that zN(t) exists on [0; tN1 ). Then,for t 2 [0;minft01; tN1 g) and N 2 NzN (t) = TN(t)PNz0 + Z t0 TN(t� s)PNF (s; zN (s)) ds;z(t) = T (t)z0 + Z t0 T (t� s)F (s; z(s)) ds:



7ThereforekzN(t)� z(t)kÆ = (�AI )Æ �zN (t)� z(t)�� (�AI)Æ �TN(t)PNz0 � T (t)z0�+ Z t0 (�AI)Æ �TN(t� s)PNF (s; zN (s))� T (t� s)F (s; z(s))� ds:= �N1 (t) + �N2 (t):Sine T (t) ommutes with (�AI)Æ,�N1 (t) = (�AI )ÆT (t) �PNz0 � z0�Z� kT (t)kL(Z) (�AI)Æ �PNz0 � z0�Z� PNz0 � z0Æ :Similarly, for the integrand de�ning �N2 (t) we have(�AI)Æ �TN(t� s) PNF (s; zN(s))� T (t� s)F (s; z(s))�Z= (�AI)ÆT (t� s) �PNF (s; zN (s))� F (s; z(s))�Z� (�AI)ÆT (t� s)L(Z) PNF (s; zN(s))� F (s; z(s))Z� et01 CÆ(t� s)Æ PNF (s; zN(s))� F (s; z(s))Z : (3.1)But PNF (s; zN(s)) � F (s; z(s))Z � PN �F (s; zN (s))� F (s; z(s))�Z + �PN � I�F (s; z(s))Z� F (s; zN(s)) � F (s; z(s))Z + �PN � I�F (s; z(s))Z : (3.2)Hene, from (3.1) and (3.2) it follows that�N2 (t) � CÆet01 Z t0 1(t� s)Æ F (s; zN(s))� F (s; z(s))Z ds+ CÆet01 Z t0 1(t� s)Æ (PN � I)F (s; z(s))Z ds:The integrand of the seond term on the RHS above is bounded by 2(t� s)Æ kF (s; z(s))kZ 2 L1(0; T ),uniformly in N , and onverges to zero as N tends to in�nity. By the Dominated Convergene Theoremthe seond term of the last inequality tends to zero as N goes to in�nity.Summarizing, we havekzN(t)� z(t)kÆ � �N (t) + Z t0 ~C(t� s)Æ F (s; zN(s)) � F (s; z(s)) ds (3.3)where, for t 2 [0; t01℄, �N (t) � C for all N 2 N and �N (t)! 0 as N !1. In partiular Z t010 �N(t) dt! 0as N !1.Let K = K(Æ) be as in Lemma 3.3 and let us de�ne ~K := C + C ~CK. Sine zN(0) = PNz0 thereexists ÆN > 0 suh that zN (t)Æ �M + 2 ~K for all t 2 [0; ÆN ℄, where M := sup0�t�t01 kz(t)kÆ. Let L bethe Lipshitz onstant for F orresponding to the set U := [0; t01℄�nkzkÆ �M + 2 ~Ko. Then, from (3.3)zN(t)� z(t)Æ � �N (t) + ~CL Z t0 1(t� s)Æ zN(s)� z(s)Æ ds 8t 2 [0; ÆN ℄;



8and, from Lemma 3.3 zN(t)� z(t)Æ � fN (t); 8t 2 [0; ÆN ℄; (3.4)where fN (t) := �N (t) + ~CKL R t0 �N (s)(t�s)Æ ds, for t 2 [0; t01℄.We shall now show that there exists N0 2 N suh that fN (t) � ~K 8t 2 [0; t01℄, 8N � N0. As weshall later see this will imply not only the existene of zN(t) on the whole interval [0; t01℄, 8N � N0, butalso the bound kzN(t)kÆ �M + 2 ~K, 8t 2 [0; t01℄, 8N � N0.In fat, observe that Z t0 �N(t)(t� s)Æ ds � Z t0 C(t� s)Æ ds� Z t0 C 1sÆ ds= C1� Æ t1�Æ :Choosing � = �(L) > 0 suÆiently small so that t1�Æ � 1� Æ2L for every t 2 [0; �℄, it follows thatZ t0 �N (t)(t� s)Æ � C2L for every t 2 [0; �℄: (3.5)On the other hand, if � < t � t01Z t0 �N (t)(t� s)Æ ds = Z t0 �N (t� s)sÆ ds= Z �0 �N(t� s)sÆ ds+ Z t� �N(t� s)sÆ ds� C1� Æ �1�Æ + Z t� �N (t� s)�Æ ds� C2L + 1�Æ Z t� �N (t� s) ds� C2L + 1�Æ Z t010 �N(s) ds:Then, sine Z t010 �N(s) ds! 0, then there exists N0 suh thatZ t0 �N (t)(t� s)Æ ds � CL 8t 2 [�; t01℄ and N � N0: (3.6)From (3.5) and (3.6) it follows thatfN(t) � C + C ~CK = ~K 8t 2 [0; t01℄ and N � N0; (3.7)as wanted.Consequently, from (3.4) and (3.7)zN(t)� z(t)Æ � ~K 8N � N0 and t 2 [0; ÆN ℄;whih implies zN(t)Æ �M + ~K 8N � N0 and t 2 [0; ÆN ℄:Now, let N � N0 be �xed. Then zN(t) exists on [0; t01℄ and for t 2 [0; t01℄, zN (t)Æ � M + 2 ~K. Infat, suppose, on the ontrary, that there exists t� < t01 suh that zN (t�)Æ =M +2 ~K and zN(t)Æ <



9M + 2 ~K for 0 � t < t�. Then, from (3.4) zN(t)� z(t)Æ � fN (t) � ~K on [0; t�), and therefore,zN(t)Æ � M + ~K on [0; t�). By the ontinuity of zN(t), we must have zN(t�)Æ � M + ~K, whihontradits zN (t�)Æ =M + 2 ~K.At this point we have shown that 8N � N0, kzN(t)kÆ �M+2 ~K, 8t 2 [0; t01℄. Therefore, forN � N0,ÆN an be hosen stritly greater than t01. Hene (3.4) holds in [0; t01℄, i.e.zN(t)� z(t)Æ � fN (t); 8t 2 [0; t01℄:Finally, sine by virtue of the Dominated Convergene Theorem, fN(t)! 0 8t 2 [0; t01℄ as N !1,the theorem follows. �4. Time DisretizationIn this setion we shall �rst �nd the representation of the approximating problem �PN� in the basis�̂N of ZN . For this purpose, let wN be the vetor whose omponents are the oeÆients of the solutionzN(t) = 0�uN(t)vN (t)�N (t)1A of problem �PN� in the basis �̂N . Then wN (t) is the solution of the IVP� ~PN�� _wN (t) = ~ANwN (t) + ~FN �t; wN (t)�wN (0) = Nwith ~AN = �QN��1KN ; ~FN (t; w) = �QN��1RNF �t; QNw� ; N = �QN��1RN 0�u0u1�0 1A ;where the matries QN , KN and the mapping RN : ZN ! R3N are de�ned by�QN�i;j = 
�Ni ; �Nj �q ; �KN�i;j = 
�Ni ; AN�Nj �q ; �RNz�i = 
�Ni ; z�q ;i; j = 1; 2; � � � ; 3N .For the time disretization, the following hybrid impliit-expliit Euler method was used:wN0 = N1�t �wNk+1 � wNk � = ~ANwNk+1 + ~FN �k�t; wNk � ; k = 0; 1; � � � :The onvergene of the solutions of the orresponding time-disretized system to the solution of � ~PN�as �t! 0 follows immediately from the following theorem.Theorem 4.1. Let n be a positive integer, B 2 L(Rn ), G : [0; T ℄� Rn ! Rn be a ontinuous funtionsuh that G(t; �) is Lipshitz ontinuous in Rn for any t 2 [0; T ℄, with onstant K independent of t.Assume that the IVP � W 0(t) = BW (t) +G(t;W (t)); W (t) 2 Rn ;W (0) =W0has a unique solution W (�) in [0; T ℄ suh that W 00(t) is bounded in [0; T ℄. Given 0 < h < 1=kBk andw0 2 Rn de�ne N(h) = [T=h℄ (the integer part of N=h) and given w0, de�ne wj , j = 1; � � � ; N(h), bywj+1 = wj + hBwj+1 + hG(jh; wj); j = 0; 1; � � � ; N(h)� 1:Then, there exists a onstant ~C suh thatmaxj=0;1;��� ;N(h) jW (jh)� wj j � eT( K+kBk1�hkBk) jW0 � w0j+ h ~C heT( K+kBk1�hkBk ) � 1i :



10If, moreover, h < 1=2kBk thenmaxj=0;1;��� ;N(h) jW (jh)� wj j � e2T (K+kBk) jW0 � w0j+ h ~C he2T (K+kBk) � 1i :Remark: It is not diÆult to show that the onlusions of this theorem remain valid under the weakerassumptions G loally Lipshitz and W 0 Lipshitz ontinuous.Proof. Let 0 < h < 1=kBk and de�ne Wj =W (jh). Using the Taylor approximation theoremWj+1 =Wj + hW 0(jh) + h22 W 00 (�j;h)=Wj + hBWj + hG (jh;Wj) + h22 W 00 (�j;h) :where �j;h 2 (jh; (j + 1)h). De�ning ej =Wj � wj we then haveej+1 = ej + hB (Wj � wj+1) + h [G (jh;Wj)�G (jh; wj)℄ + h22 W 00 (�j;h)= ej + hBej+1 + h [G (jh;Wj)�G (jh; wj)℄ + hB (Wj �Wj+1) + h22 W 00 (�j;h) ;or equivalentlyej+1 � hBej+1 = ej + h [G (jh;Wj)�G (jh; wj)℄ + hB (Wj �Wj+1) + h22 W 00 (�j;h) :Therefore,(1� hkBk) jej+1j � jej j+ h jG (jh;Wj)�G (jh; wj)j+ hkBk jWj �Wj+1j+ h22 jW 00 (�j;h)j� jej j+ hK jej j+ h2kBk ���W 0 �~�j;h����+ h22 jW 00 (�j;h)jwhere ~�j;h 2 (jh; (j + 1)h).Letting C be an upper bound for jW 0(t)j+ jW 00(t)j in [0; T ℄, it follows thatjej+1j � 1 + hK1� hkBk jej j+ h2 C (1 + kBk)1� hkBk :By indution one has jej j � � 1 + hK1� hkBk�j je0j+ h2 C (1 + kBk)1� hkBk h 1+hK1�hkBkij � 11+hK1�hkBk � 1 :Now, sine (1 + x)j � ejx for any x > �1 and j 2 N, we have that� 1 + hK1� hkBk�j = �1 + hK + kBk1� hkBk�j � ejh( K+kBk1�hkBk ) � eT( K+kBk1�hkBk )and h 1+hK1�hkBkij � 11+hK1�hkBk � 1 = h 1+hK1�hkBkij � 1hK+kBk1�hkBkHene jWj � wj j � eT( K+kBk1�hkBk) jW0 � w0j+ hC 1 + kBkK + kBk heT( K+kBk1�hkBk ) � 1i



11for any j = 0; 1; : : : ; N(h). This proves the �rst part of the theorem. The �nal assertion follows fromthe fat that 1� hkBk > 1=2 if h < 1=2kBk. �
Comment: The previous theorem together with the result of Theorem 3.4 ensures the onvergeneof the fully-disretized system to the solutions of (2.1) as N ! 1 and �t ! 0 in an appropriate way.Moreover, for �xed N , Theorem 4.1 shows that the order of onvergene of the time-disretized equationsto the solution of � ~PN� is O(�t). However, we have not obtained an order of onvergene for the fully-disretized system. Moreover, due to the intrinsi nature of the spetral approximations being used, itis not expeted that suh an order of onvergene ould be obtained.5. Numerial ResultsFor the numerial results presented below we used this hybrid method with N = 32 and �t = 10�5and the parameter values reported by F. Falk in [13℄ for the alloy Au23Cu30Zn47: �2 = 24 J m�3K�1,�4 = 1:5�105 J m�3, �6 = 7:5�106 J m�3K�1, �1 = 208K, Cv = 2:9 J m�3K�1, k = 1:9w m�1K�1,� = 11:1 g m�3. We also took  = 10�12 J m�1 as reported in [15℄. For the value of � we hose � = 1.This hoie has no partiular physial meaning. To our knowledge, there are no reports of values of� for real materials although there seems to be evidene that for some SMA, � is either very small orzero. Figure 1 shows the stress-strain urves obtained from the potential (1.2) for these values of theparameters. The doted lines indiate the unstable parts of the urves, while the horizontal lines indiatepossible hysteresis loops.It is important to mention that the results in this artile depend stronly on the hypothesis � > 0,that is on the assumption that there are visous stresses in the material. This approah does not workif � = 0. For the non-visous ase � = 0 we refer the reader to [30℄, [34℄, [29℄. An algorithm for thenumerial approximation of the solutions in this ase was introdued by Niezgodka and Sprekels in [25℄.Further numerial and stability results an be found in [18℄.
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Figure 1: Stress-Strain urves for di�erenttemperatures obtained from (1.2) with the val-ues of �2, �4, �6 and �1 as in [13℄. The dot-ted lines represent unstable parts of the urves.Horizontal lines indiate possible hysteresis loops.
Experiment 1: Low-temperature steady-state.For this experiment we took f = g � 0, �0(x) � 2000 K, u0(x) = PNh(x), whereh(x) = � 0:05x; if 0 � x � 0:5;0:05(1� x); if 0:5 � x � 1;and v0 � 0. Thus, the beam is initially in the low temperature range omposed of two segments ofmartensites, namely, martensite M+ on 0 � x < 12 and martensite M� on 12 < x � 1 (5% initial strain).The evolution of displaement and temperature an be observed in Figures 2a and 2b, respetively. Thisevolution is due to the fat that the initial ondition z0(x) = 0�u0(x)v0(x)�0(x)1A does not orrespond to a steady-state of system (1.1a-e). The system evolves until a steady-state omposed of two symmetri segmentsof martensites M+ and M� (�= 11:25% strain) and onstant temperature � �= 2220 K is reahed. Figure2 shows in more detail the displaement pro�le during the �rst 250 milliseonds.

(a) (b)
()

Figure 2: Low temperature steady-state. Evo-lution of displaement (a, ) and temperature(b) from an unsteady low temperature initialondition.
Experiment 2: High-temperature steady-state.



13Here we took �0(x) � 6000 K and u0, v0, f and g as in Experiment 1. The evolution of displaementand temperature is shown in Figures 3a and 3b, respetively. The beam osillates until the steady-state onsisting of zero deformation and onstant temperature � �= 505:60 K is reahed. This is inagreement with the fat that above the austenite-�nish temperature � = Af (in this ase Af �= 2830 K)the steady-states satisfy u � 0, � � onst. Due to the high-temperature unsteady initial ondition thebeam immediately bends downward approahing the state u � 0 while temperature dereases slightly,originating the damped osillations observed in Figures 3a and 3b. The osillations of the middle-pointof the beam an be appreiated in Figure 3.
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Figure 3: High temperature steady-state. (a)displaement pro�le; (b) temperature pro�le;() middle-point displaement.

Experiment 3: Pulse at low temperature.In this experiment we studied the e�ets of a distributed fore onsisting of a pulse around themiddle-point of the beam when the initial temperature is below the martensite �nish temperature � =Mf �= 2080 K. We took u0(x) = v0(x) � 0, �0(x) � 2000 K, g(x; t) � 0 andf(x; t) = � 5� 104; if 0:4 � x � 0:6 and 0 < t < 0:5� 10�3;0; otherwise.Initially, points around the enter move upward while the e�et of the pulse propagates to theendpoints of the beam (Figures 4a, 4). At exatly the time this e�et reahes the endpoints, themiddle-point deetion reahes a maximum and small damped osillations begin to take plae (Figure4) around the �nal equilibrium state onsisting of two symmetri segments of martensites M+, M�(�= 11:05% strain) and onstant temperature � �= 2260 K (Figure 4b).
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(a) (b)
()

Figure 4: Pulse at low temperature. (a), ()displaement pro�le; (b) temperature pro�le.
Experiment 4: Pulse at high temperature.In this ase we investigated the e�ets of a pulse around the middle-point of the beam, whih wasset initially at a onstant temperature above Af . We took �0(x) � 6000 K and u0, v0, f and g as inExperiment 3. At the beginning, the beam bends upward until the pulse is swithed o� (Figure 5).Immediately afterwards, damped osillations begin to our. These osillations take plae around the�nal equilibrium state onsisting of u � 0 and onstant temperature � �= 6020 K (Figures 5a, 5b). Reallthat above the austenite �nish temperature the only unloaded steady-state is u � 0.

(a) (b)
()

Figure 5: Pulse at high temperature. (a), ()displaement pro�le; (b) temperature pro�le.
Experiment 5: Waiting-Heating.Here, we observed the e�ets of heating the beam when it is set initially at an equilibrium stateonsisting of two symmetri segments of martensites M+ and M�. For this, we took as the initial data



15the �nal steady-state of Experiment 1 (11.25% initial strain, �0(x) � 2220 K), f(x; t) � 0 and the heatsoure g(x; t) onsisting of a uniformly spatially distributed heat pulse as followsg(x; t) = � 5� 104; if 0:2 < t < 0:25;0; otherwise.The system remains at the initial state until the heat pulse is swithed on. At this time thetemperature starts to inrease (Figure 6b), the martensite rystals are onverted into austenite and thebeam bends downward showing small damping osillations around zero deformation (Figure 6a). Theseosillations are quikly damped and the beam reahes the steady-state u � 0, � �= 3360 K.
(a) (b)Figure 6: Waiting-Heating. (a) displaement and (b) temperature pro�les.Experiment 6: Heating-Waiting-Cooling (Two-way shape memory e�et)For this experiment we took again as initial data the �nal steady-state of Experiment 1. We alsotook f(x; t) � 0 and the distributed heat soure g(x; t) onsisting of an initial uniformly distributed heatpulse whih is swithed o� after t = 0:05 se. At t = 1:45 se. the opposite heat pulse is applied untilt = 1:50 se. when it is swithed o�. More preisely,g(x; t) = 8><>: 8� 103; if t < 0:05;�8� 103; if 1:45 < t < 1:50;0; otherwise.The temperature raises uniformly up to nearly 3360 K while the beam approahes the undeformedstate. After the heat pulse is swithed o�, temperature remains at about 3360 K while displaementshows small damped osillations around u � 0 due to inertial e�ets. The sample is now ompletely inthe austenite phase. At t = 1:45, when the opposite pulse is applied, the temperature dereases uniformlyand remains at about 2220 K, while the beam undergoes a proess of reverse transformation whih takesit bak to the original initial on�guration showing the so-alled two-way shape memory phenomenon(Figures 7a-d).



16 (a) (b)

0 0.5 1 1.5 2 2.5 3
-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

time (sec)

m
id

dl
e-

po
in

t d
is

pl
ac

em
en

t

0 0.5 1 1.5 2 2.5 3
180

200

220

240

260

280

300

320

340

time (sec)

m
id

dl
e-

po
in

t t
em

pe
ra

tu
re

() (d)Figure 7: Heating-Waiting-Cooling. (a) displaement pro�le; (b) temperature pro�le; ()middle-point displaement; (d) middle-point temperature.6. ConlusionsIn this artile, disrete spetral approximations to the nonlinear partial di�erential equations thatmodel the dynamis of thermomehanial martensiti transformations in one-dimensional shape memoryalloys with non-onvex Landau-Ginzburg potentials were developed.By using the theories of analyti semigroups and interpolation spaes and a generalization of Gron-wall's lemma for singular kernels, the onvergene of the approximations was shown to hold not only inthe state-spae norm but also in the stronger k � kÆ-norm.The numerial experiments performed using this sheme show that under di�erent initial onditionsand distributed external ations the model (1.1) is able to produe solutions whose qualitative behavioris found to be in lose agreement with laboratory experiments performed on Shape Memory Alloys undersimilar onditions.From a pratial point of view it would be very important to �nd the values of the vetor parameterq that \best �t" experimental data for a given alloy. This is alled the parameter identi�ation problemabout whih no results are yet known. In this regard the sheme presented here provides a friendlymathematial framework for attaking this problem. E�orts in this diretion are already underway andresults will be published in a forthoming artile.Aknowledgements. The authors want to thank an anonymous referee for several important ommentsand suggestions and for bringing referene [18℄ to their attention.Referenes[1℄ ACHENBACH, M. and MULLER, I., \A Model for Shape Memory", Journal de Physique, Colloque C4,Suppl�ement au No 12, Tome 43, d�eembre 1982, pp C4 163-167.[2℄ ACHENBACH, M. and MULLER, I., \Creep and Yield in Martensiti Transformations", Igenieur-Arhiv, 53, pp73-83, (1983).[3℄ ACHENBACH, M. and MULLER, I., \Shape Memory as a Thermally Ativated Proess", Plastiity Today:Modelling Methods and Appliations, pp 515-531, Sawzuk and Bianhi.
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