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2Biology, et. (see [3℄, [9℄) originate problems whose abstrat formulation result in nonlinear systems in whihthe unknown vetor parameter appears in the nonlinear term. In these and many other pratial problems itis very important to have a mathematial framework in whih the identi�ation of the parameter be possiblefrom experimental and laboratory data.The quasilinearization methods for identi�ation ([5℄,[7℄) provide pratial mathematial tools for ahievingthis goal. However, their appliation require not only that the solution depends ontinuously on the unknownparameter but also that an expliit formula for the derivative of the solution with respet to that parameterbe derived.The organization of the artile is as follows. In Setion 2 the q-di�erentiability of the solution of (1.1)is studied and suÆient onditions are given under whih that property holds. In Setion 3 a regularityresult for that derivatives is obtained. The latter result is required in order to prove onvergene of thequasilinearization algorithms previously mentioned while the former is required for the algorithm to be well-de�ned. In Setion 4 an appliation example is onsidered in the ontext of a mathematial model for shapememory alloys. The partial di�erential equations that model the dynamis of these materials result in anabstrat Cauhy problem in whih the unknown parameters de�ning the free energy potential arise in thenonlinear terms. Theorems of Setions 2 and 3 are used in this partiular ase to show that the solutiondepends smoothly on the unknown vetor parameter.2. Parameter di�erentiability of the solution of (1.1)In this setion we will prove the Fr�ehet di�erentiability of the solution of (1.1) with respet to theparameter q. We �rst reall some properties of analyti semigroups and make some general assumptions onthe nonlinear part of the equation.Let �(A) denote the spetrum of the operator A. Sine A generates an analyti semigroup, the type ofA, de�ned as ! := sup fRe(�) : � 2 �(A)g is �nite and for any � 2 C with Re(�) > !, the frational powers(�I � A)Æ of �I � A are losed, linear and invertible operators in Z for any Æ 2 [0; 1℄ (see [10℄). In whatfollows, � will be �xed, Re(�) > ! and ZÆ shall denote the spae D �(�I �A)Æ� imbedded with the norm ofthe graph of (�I �A)Æ . Due to the fat that Re(�) > !, one has that � 2 �(A), the resolvent set of A, andthe graph norm is equivalent to the norm kzkÆ := (�I �A)ÆzZ .Consider the following standing hypothesis.(H1). There exists Æ 2 (0; 1) suh that ZÆ � D and F : Q� [0; T ℄� ZÆ ! Z is loally Lipshitz ontinuousin t and z, i.e., for any q 2 Q and any bounded subset U of [0; T ℄� ZÆ there exists a onstant L = L(q; U)suh that kF (q; t1; z1)� F (q; t2; z2)kZ � L (jt1 � t2j+ kz1 � z2kÆ) ; 8 (ti; zi) 2 U:where the onstant L an be hosen independent of q on any ompat subset QC of Q.The following result follows immediately from Theorem 6.3.1 in [10℄.Theorem 2.1. Let q 2 Q and z0 2 ZÆ and assume F satis�es hypothesis (H1). Then there exists t1 =t1(q; z0) > 0 suh that (P )q has a unique lassial solution on [0; t1), i.e., there exists a funtion z(�) 2C0([0; t1) : ZÆ) \ C1((0; t1) : Z) suh that� _z(t) = Az(t) + F (q; t; z(t)); t 2 (0; t1)z(0) = z0:The funtion z(t) satis�es the integral equationz(t) = T (t)z0 + Z t0 T (t� s)F (q; s; z(s)) ds; 8t 2 [0; t1):Also, t1 an be hosen positive independent of q on any ompat subset QC of Q.Let us denote by z(t; q) the solution z(t) of (1.1).The following generalization of Gronwall's Lemma for singular kernels, whose proof an be found in [8℄(Lemma 7.1.1), will be essential for the main result of this setion.



3Lemma 2.2. Suppose L � 0, 0 < Æ < 1 and a(t) is a nonnegative, loally integrable funtion on 0 � t � T .Let u(t) be a real valued funtion de�ned on [0; T ℄ satisfyingu(t) � a(t) + L Z t0 1(t� s)Æ u(s) dson this interval. Then, there exists a onstant K = K(Æ) suh thatu(t) � a(t) +KL Z t0 a(s)(t� s)Æ ds for 0 � t < T:The following theorem states a result relating the regularity of F and the Lipshitz ontinuity of z(t; q)with respet to q.Theorem 2.3. Suppose F (q; t; z) satis�es hypothesis (H1) for some Æ 2 (0; 1). If the mapping q ! F (q; �; z)from Q into L1(0; T : Z) is loally Lipshitz ontinuous for all z 2 ZÆ with Lipshitz onstant independent ofz on ZÆ-bounded sets, then the mapping q ! z(�; q) is loally Lipshitz ontinuous from Q into L1(0; T : ZÆ).Proof. Let t 2 [0; T ℄ and q1; q2 2 Q. Thenz(t; q1) = T (t)z0 + Z t0 T (t� s)F (q1; s; z(s; q1)) ds;z(t; q2) = T (t)z0 + Z t0 T (t� s)F (q2; s; z(s; q2)) dsand therefore z(t; q1)� z(t; q2) = Z t0 T (t� s) [F (q1; s; z(s; q1))� F (q2; s; z(s; q2))℄ ds= Z t0 T (t� s) [F (q1; s; z(s; q1))� F (q2; s; z(s; q1))℄ ds+ Z t0 T (t� s) [F (q2; s; z(s; q1))� F (q2; s; z(s; q2))℄ ds:Hene, if Æ 2 (0; 1) is suh that (H1) holds, then it follows thatkz(t; q1)� z(t; q2)kÆ � Z t0 C(t� s)Æ kF (q1; s; z(s; q1))� F (q2; s; z(s; q1)) k+ Z t0 C(t� s)Æ kF (q2; s; z(s; q1))� F (q2; s; z(s; q2)) k� C1 kq1 � q2k t1�Æ1� Æ + Z t0 C L(t� s)Æ kz(s; q1)� z(s; q2)kÆ ds� C2 kq1 � q2k+ Z t0 C L(t� s)Æ kz(s; q1)� z(s; q2)kÆ ds:Applying Lemma 2.2 we obtain kz(t; q1)� z(t; q2)kÆ � K1 kq1 � q2k eK2Tfor some onstants K1, K2. The theorem then follows. �Next, suÆient onditions on F are given that ensure di�erentiability of the mapping q ! z(t; q).



4Theorem 2.4. Assume (H1) holds for some Æ 2 (0; 1) and the mapping (q; z(�)) ! F (q; �; z(�)) fromQ � L1(0; T : ZÆ) into L1(0; T : Z) is Fr�ehet di�erentiable in both variables. Assume also that themapping (q; z(�)) ! Fq (q; �; z(�)) from Q � L1(0; T : ZÆ) into L1 �0; T : L� ~Q; Z�� is loally Lipshitzontinuous with respet to q and z.Then the mapping q ! z(�; q) is Fr�ehet di�erentiable from Q ! L1(0; T : ZÆ) and for any h 2 ~Q,zq(t; q)h is the solution vh(t) of the linear IVP8><>: _vh(t) = Avh(t) + Fz(q; t; z(t; q))vh(t) + Fq(q; t; z(t; q))h; t 2 (0; T )vh(0) = 0:Proof. Let t 2 [0; T ℄ be �xed and Æ 2 (0; 1) as in (H1). Then for any h 2 ~Q suh that q + h 2 Q we havez(t; q + h) = T (t)z0 + Z t0 T (t� s)F (q + h; s; z(s; q + h)) ds;z(t; q) = T (t)z0 + Z t0 T (t� s)F (q; s; z(s; q)) dsand vh(t) = Z t0 T (t� s) [Fz(q; s; z(s; q))vh(s) + Fq(q; s; z(s; q))h℄ ds:Let � > 0. We will show that there exists  > 0 suh that if h 2 ~Q and khk <  then kz(t; q+h)�z(t; q)�vh(t)kÆ < � khk. For this purpose, observe thatz(t;q + h)� z(t; q)� vh(t)= Z t0 T (t� s) [F (q + h; s; z(s; q + h))� F (q; s; z(s; q))℄ ds� Z t0 T (t� s) [Fz(q; s; z(s; q))vh(s) + Fq(q; s; z(s; q))h℄ ds= Z t0 T (t� s) [F (q + h; s; z(s; q + h))� F (q + h; s; z(s; q))℄ ds+ Z t0 T (t� s) [F (q + h; s; z(s; q))� F (q; s; z(s; q))� Fq(q; s; z(s; q))h℄ ds+ Z t0 T (t� s) [F (q; s; z(s; q + h))� F (q; s; z(s; q))� Fz(q; s; z(s; q))vh(s)℄ ds+ Z t0 T (t� s) [F (q; s; z(s; q))� F (q; s; z(s; q + h)℄ ds:= I1 + I2 + I3 + I4;where Ii, i = 1; 2; 3; 4 denotes the ith term in the order given above.Sine F is Fr�ehet di�erentiable with respet to z, there exists 1 > 0 suh that if kz(q + h; �) �z(q; �)kL1(0;T :ZÆ) < 1, thenkI3kÆ� Z t0 C(t� s)Æ kF (q; s; z(s; q + h))� F (q; s; z(s; q))�Fz(q; s; z(s; q)) (z(s; q + h)� z(s; q))kZ ds+ Z t0 C(t� s)Æ kFz(q; s; z(s; q)) (z(s; q + h)� z(s; q)� vh(s))kZ ds� Z t0 C �(t� s)Æ kz(s; q + h)� z(s; q)kÆ ds+ Z t0 C1(t� s)Æ kz(s; q + h)� z(s; q)� vh(s)kÆ ds



5Now, by virtue of Theorem 2.3, there exist onstants 2; K > 0 suh that kz(�; q + h)� z(�; q)kL1(0;T :ZÆ) �Kkhk < 1 whenever khk < 2. Hene, if khk < 2, we obtainkI3kÆ � Z t0 C K �(t� s)Æ khk ds+ Z t0 C1(t� s)Æ kz(s; q + h)� z(s; q)� vh(s)kÆ ds:Also, sine F is Fr�ehet di�erentiable with respet to q, there exists 3 > 0 suh that if khk < 3, thenkI2kÆ � Z t0 C �(t� s)Æ khk ds:On the other hand, observe that I1 + I4 an be written asI1 + I4 = Z T0 T (t� s) [F (q + h; s; z(s; q + h))� F (q; s; z(s; q + h))℄ ds� Z T0 T (t� s) [F (q + h; s; z(s; q))� F (q; s; z(s; q))℄ ds= Z t0 T (t� s)Fq (q + �1(h)h; s; z(s; q + h))h ds� Z t0 T (t� s)Fq (q + �2(h)h; s; z(s; q))h dswhere 0 < �1(h); �2(h) < 1. Consequently, by the Lipshitz ontinuity of Fq we have thatkI1 + I4kÆ � Z t0 C(t� s)Æ kFq(q + �1(h)h; s; z(s; q + h))� Fq(q + �1(h)h; s; z(s; q))kZ khk ds+ Z t0 C(t� s)Æ kFq(q + �1(h)h; s; z(s; q))� Fq(q + �2(h)h; s; z(s; q))kZ khk ds� khk Z t0 C(t� s)Æ (L1kz(s; q + h)� z(s; q)kÆ + L2j�1(h)� �2(h)j khk) ds� C3 khk2 ;where the last inequality follows by virtue of Theorem 2.3.Summarizing, there exist onstants �;K1;K2 > 0 suh that whenever khk < � one haskz(t; q + h)� z(t; q)� vh(t)kÆ � K1 khk �+K2 Z t0 kz(t; q + h)� z(t; q)� vh(t)kÆ(t� s)Æ ds:The above inequality together with Lemma 2.2 imply the existene of a onstant ~K suh thatkz(t; q + h)� z(t; q)� vh(t)kÆ � ~K khk �; provided khk � �;and the theorem follows. �3. Lipshitz ontinuity of the Fr�ehet derivativeIn order to prove onvergene of the quasilinearization algorithms it is neessary not only that solutionsbe di�erentiable with respet to the unknown parameter q but also that the orresponding derivative besmooth. The next result provides suÆient onditions for the Lipshitz regularity of zq.



6Theorem 3.1. Let the hypotheses of Theorem 2.4 hold. Assume also that the mapping (q; z(�))! Fz(q; �; z(�))from Q�L1(0; T : ZÆ) into L1(0; T : L(ZÆ ; Z)) is loally Lipshitz ontinuous with respet to both variablesq and z(�). Then, the mapping q ! zq(�; q) from Q! L1(0; T : L( ~Q; Z)) is loally Lipshitz ontinuous.Proof. By Theorem 2.4, zq(t; q)h oinides with the solution of the initial value problem� _vq;h(t) = Avq;h(t) +G(q; t; vq;h; h) + Fq(q; t; z(t; q))hvq;h(0) = 0:where G(q; t; v; h) := Fz(q; t; z(t; q))v + Fq(q; t; z(t; q))h. Now, let QC be a ompat subset of q and q1; q2 2QC . Then, for v 2 ZÆ and t 2 [0; T ℄, there follows thatkG(q1; t; v; h)�G(q2; t; v; h)kZ � kFz(q1; t; z(t; q1))� Fz(q2; t; z(t; q2))kL(ZÆ ;Z) kvkZÆ+ kFq(q1; t; z(t; q1))� Fq(q2; t; z(t; q2))kL( ~Q;Z) khk ~Q� L1 kz(t; q1)� z(t; q2)kZÆ kvkZÆ + L2 kq1 � q2k ~Q khk ~Q� �~L1 kvkZÆ + L2 khk ~Q� kq1 � q2k ~Q ;where, in the third inequality the fat that z(t; q) is loally Lipshitz ontinuous with respet to q was used(Theorem 2.3). Therefore, the mapping q ! G(q; �; v; h) is loally Lipshitz ontinuous and the Lipshitzonstant an be hosen independent of v and of h on ompat subsets of ZÆ and ~Q, respetively. HeneG(q; t; v; h) satis�es the hypothesis of Theorem 2.3 and the mapping q ! zq(�; q)h is loally Lipshitz on-tinuous. Moreover, sine the Lipshitz onstant of G is independent of h on ~Q-bounded sets, it followsimmediately from the proof of Theorem 2.3 that the Lipshitz onstant of the mapping q ! zq(�; q)h analso be hosen independent of h on ~Q-bounded sets. The theorem is then proved. �4. An appliationIn this setion we onsider an example in whih parameter di�erentiability is proved in the followingsystem of nonlinear partial di�erential equations:�utt � ��uxxt + uxxxx = f(x; t) + �2�2(� � �1)ux � 4�4u3x + 6�6u5x�x ; x 2 (0; 1); 0 � t � T (4.1a)Cv�t � k�xx = g(x; t) + 2�2�uxuxt + ��u2xt; x 2 (0; 1); 0 � t � T (4.1b)u(x; 0) = u0(x); ut(x; 0) = v0(x); �(x; 0) = �0(x); x 2 (0; 1) (4.1)u(0; t) = u(1; t) = uxx(0; t) = uxx(1; t) = 0; 0 � t � T (4.1d)�x(0; t) = �x(1; t) = 0; 0 � t � T: (4.1e)These equations arise from the onservation laws of linear momentum and energy in a one-dimensionalshape memory body. The funtions u and � represent transverse displaement and absolute temperature,respetively. Subsripts \x" and \t" denote partial derivatives and �, Cv , k, �, , �2, �4, �6, �1 are positiveonstants depending on the material being onsidered. The funtions f(x; t) and g(x; t) denote distributedfores and distributed heat soures, respetively. For a detailed explanation of the model and the meaningof the parameters involved we refer the reader to [11℄ and the referenes therein.We are interested in determining the di�erentiability of the solution of these equations with respet to theparameters �2, �4, �6 and �1.The IBVP (4.1) an be written as an abstrat nonlinear Cauhy Problem like (1.1) in an appropriate Ba-nah Spae. For this purpose let the admissible parameter set be de�ned asQ := �q = (�2; �4; �6; �1) jq 2 R4+	,the state spae Z as the Hilbert spae H10 (0; 1) \H2(0; 1)� L2(0; 1)� L2(0; 1) with the inner produt*0�uv�1A ;0� ~u~v~�1A+ :=  Z 10 u00(x)~u00(x) dx+ � Z 10 v(x)~v(x) dx+ Cvk Z 10 �(x)~�(x) dx:



7The operator A on Z is de�ned byD(A) =8<:0�uv�1A 2 Z ������ u 2 H4(0; 1); u(0) = u(1) = u00(0) = u00(1) = 0v 2 H10 (0; 1) \H2(0; 1)� 2 H2(0; 1); �0(0) = �0(1) = 0 9=;and for z = 0�uv�1A 2 D(A), A0�uv�1A := 0� 0 I 0��D4 �D2 00 0 kCvD21A0�uv�1A ;where Dn := �n�xn .De�ne also z0(x) = 0�u0(x)v0(x)�0(x)1A and F (q; t; z) : Q� [0; T ℄�D ! Z byF (q; t; z) = 0� 0f2(q; t; z)f3(q; t; z)1A ;where �f2(q; t; z)(x) = f(x; t) + �2�2(� � �1)ux � 4�4u3x + 6�6u5x�x ;Cvf3(q; t; z)(x) = g(x; t) + 2�2�uxvx + ��v2xand D = H10 (0; 1) \H2(0; 1)�H1(0; 1)�H1(0; 1).With the above notation, the IBVP (4.1) takes the form� _z(t) = Az(t) + F (q; t; z); z(t) 2 Z; 0 � t � T;z(0) = z0: (4.2)Assume the following standing hypothesis.(H2). For eah �xed t � 0, the funtions f(x; t), g(x; t) are in L2(0; 1) and there exist nonnegative funtionsKf (x), Kg(x) 2 L2(0; 1) suh thatjf(x; t1)� f(x; t2)j � Kf (x)jt1 � t2j; jg(x; t1)� g(x; t2)j � Kg(x)jt1 � t2jfor all x 2 (0; 1), t1; t2 2 [0; T ℄.The following result an be easily derived from theorems 3.7 and 3.11 in [12℄ with only slight modi�a-tions in order to take into aount for the di�erent boundary onditions being onsidered here. Sine themodi�ations needed are trivial and not relevant for the goals pursued by this artile, we do not give detailshere.Theorem 4.1. ([12℄) Let the operator A and the mapping F be as de�ned above. Then A generates ananalyti semigroup T (t) in Z and, if (H2) holds, then F satis�es (H1) for any Æ 2 ( 34 ; 1) and by Theorem2.1 has a unique lassial solution z(t; q).The following theorem and its orollary show that the operator A and the funtion F satisfy ertainregularity onditions, whih, in view of Theorems 2.4 and 3.1, ensure di�erentiability of the mapping q !z(�; q) and the Lipshitz ontinuity of its Fr�ehet derivative.



8Theorem 4.2. Let Z, A and F (q; t; z) be as de�ned above and assume (H2) holds. Then the mapping(q; z(�)) ! F (q; �; z(�)) from Q� L1(0; T : ZÆ) into L1(0; T : Z) is Fr�ehet di�erentiable in both variables.Also, the mappings (q; z(�))! Fq(q; �; z(�)) and (q; z(�))! Fz(q; �; z(�)) are loally Lipshitz ontinuous fromQ�L1(0; T : ZÆ) into L1(0; T : L( ~Q; Z)) and from Q�L1(0; T : ZÆ) into L1(0; T : L(ZÆ ; Z)), respetively.Proof. It follows immediately that f2(q; t; z) and f3(q; t; z), as previously de�ned, are di�erentiable withrespet to both q and z, and their Fr�ehet derivatives are given by:Dzf2(q; t;0�uv�1A)0� ~u~v~�1A = f2;u~u+ f2;v~v + f2;�~�;Dzf3(q; t;0�uv�1A)0� ~u~v~�1A = f3;u~u+ f3;v~v + f3;�~�;Dqf2(q; t;0�uv�1A) = 1� h2�0u0 + 2(� � �1)u00 ; �12 (u0)2 u00 ; 30 (u0)4 u00 ; �2�2u00i ;Dqf3(q; t;0�uv�1A) = 1Cv [2�u0v0 ; 0 ; 0 ; 0℄ ;where the linear operators fi;u, fi;v and fi;�, i = 2; 3 aref2;u = 1� n2�2�0D + 2�2(� � �1)D2 � 24�4u0u00D � 12�4 (u0)2D2+120�6 (u0)3 u00D + 30�6 (u0)4D2o ;f2;v = 0f2;� = 1� f2�2u0D + 2�2u00g ;f3;u = 1Cv f2�2�v0Dgf3;v = 1Cv f2�2�u0D + 2��v0Dg ;f3;� = 1Cv f2�2u0v0g : �Corollary 4.3. Under the same hypotheses of Theorem 4.2, the mapping q ! z(�; q) is Fr�ehet di�erentiableand the mapping q ! zq(�; q) is loally Lipshitz ontinuous from Q into L1 �0; T : L( ~Q; Z)�.Proof. The proof is an immediate onsequene of Thoeorems 4.2, 2.4 and 3.1. �5. ConlusionsIn this artile we have onsidered an abstrat nonlinear evolution equation with an unknown parameterappearing in the nonlinear term. By employing the theory of analyti semigroups and a generalization ofGronwall's lemma for singular kernels we have derived suÆient onditions under whih the solutions aredi�erentiable with respet to the unknown parameter q with Lipshitz ontinuous Fr�ehet derivative. Thisondition is required for the onvergene of the quasilinearization algorithms for identi�ation of q fromexperimental data.
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