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2approximation of the in�nite dimensional problem, after whih an optimization algorithm based onthese approximations is implemented. The seond approah, alled the diret approah, onsists ofapplying an optimization algorithm to the in�nite dimensional problem (P )q and using �nite dimensionalapproximations when needed to solve the resulting in�nite dimensional subproblems. Depending on theproblem being onsidered, one method may be more eÆient than the other. Methods based on theindiret approah are usually easier to implement omputationally, however in general, they require thatthe dynami equations be solved a greater number of times than diret methods do. For this reason,in pratial problems the use of indiret methods is mainly restrited to linear problems. Also, forindiret methods, no more than subsequential onvergene an be obtained while \full" onvergene anbe proved for ertain diret methods.The onvergene issue in ID problems is very important. Although diret methods usually generatemuh more eÆient algorithms and quite often full onvergene an be shown, they have the drawbakthat they require the solution of the system to be smooth with respet to the parameters. In many asesthis smoothness does not exist or it may be diÆult to prove.Identi�ation problems arise often in many physial, geologial, hemial and biologial systems. It isfor that reason that a great amount of attention has been devoted to the study of identi�ation methodsfor linear and nonlinear distributed parameter systems.In partiular, the quasilinearization approah to ID problems has been studied by several authors fordi�erent type of problems. Brewer, Burns and Cli� ([4℄) have worked on many identi�ation issues thatarise in the study and appliation of quasilinearization methods for nonhomogeneous linear systems ofthe type _z(t) = A(q)z(t) + u(t), where the dependene on the unknown parameter q omes throughthe linear operator A(q). Later on, Hammer ([6℄) applied these tools to nonlinear problems of the type_z(t) = A(q)z(t)+f(t; z), where f(t; z) is nonlinear in z but it does not depend on the unknown parameterq. Banks and Groome ([2℄) onsidered a quasilinearization approah for ID problems arising in the studyof general nonlinear problems of the type _z(t) = g(t; z(t); q), but their work is valid in �nite dimensionalstate spaes only, i.e., z(t) 2 Rn and it does not extend to the in�nite dimensional ontext. ID problemsfor systems of the type (P )q have never been studied previously.The organization of this artile is as follows. In Setion 2 the quasilinearization algorithm for parameteridenti�ation in an abstrat ontext is derived. In Setion 3 suÆient onditions for the onvergene thealgorithm are given. In Setion 4 a omparison is made between the approah presented here and thestandard approah to quasilinearization. In Setion 5 an appliation is presented in whih the parametersthat de�ne the free energy in a model for Shape Memory Alloys are identi�ed.2. Quasilinearization AlgorithmIn this setion we will introdue the algorithm, but �rst we need to reall some properties of analytisemigroups and make some assumptions on the nonlinear part of the equation.Sine A generates an analyti semigroup, ! := sup fRe(�) : � 2 �(A)g is �nite and for any omplex �with Re(�) > !, the frational powers (�I � A)Æ of �I � A are losed, linear and invertible operatorsin Z for Æ 2 [0; 1℄ (see [8℄). From now on, � will be �xed and Re(�) > !, ZÆ shall denote the spaeD �(�I �A)Æ� imbedded with the norm of the graph of (�I �A)Æ . Due to the fat that Re(�) > !, onehas � 2 �(A) and this norm is equivalent to the norm kzkÆ := (�I �A)ÆzZ .Consider the following standing hypothesis.(H1). There exists Æ 2 (0; 1) suh that ZÆ � D and F : Q � [0; T ℄ � ZÆ ! Z is loally Lipshitzontinuous in t and z, i.e., for any q 2 Q and any bounded subset U of [0; T ℄�ZÆ there exists a onstantL = L(q; U) suh thatkF (q; t1; z1)� F (q; t2; z2)kZ � L (jt1 � t2j+ kz1 � z2kÆ) ; 8(ti; zi) 2 Uwhere the onstant L an be hosen independent of q on any ompat subset QC of Q.The following theorem follows immediately from Theorem 6.3.1 in [8℄.Theorem 1. Let q 2 Q and z0 2 ZÆ. If F satis�es (H1), then there exists t1 = t1(q; z0) > 0 suhthat (P )q has a unique lassial solution on [0; t1). i.e., there exists a funtion z(�) 2 C0([0; t1) :ZÆ) \ C1((0; t1) : Z) suh that� _z(t) = Az(t) + F (q; t; z(t)); t 2 (0; t1)z(0) = z0:



3The funtion z(t) satis�es the integral equationz(t) = T (t)z0 + Z t0 T (t� s)F (q; s; z(s)) ds; 8t 2 [0; t1):Also, t1(q; z0) > 0 an be hosen independent of q on ompat subsets of Q.Let us denote by z(t; q) the solution z(t) of (P )q .Consider now the parameter estimation problem (ID). In order to obtain the algorithm, we assumefrom now on, that for eah �xed t 2 [0; t1) the mapping q ! z(t; q) is Fr�ehet di�erentiable. SuÆientonditions on F that guarantee this assumption an be found in [5℄. Assume for the time being thatthere exists a unique minimizer q� 2 Q of J(q). The following algorithm is proposed.Step 1: Given an estimate qk of q�, approximate z(t; q) by its �rst order Taylor expansion about qk, i.e.,let zk+1(t; q) := z(t; qk) + zq(t; qk) �q � qk� where zq(t; q) denotes the Fr�ehet derivative of z(t; q) withrespet to q.Step 2: De�ne the modi�ed error riterion byJk(q) := 12 mXi=1 Czk+1(ti; q)� ẑi2Y= 12 mXi=1 C �z(ti; qk) + zq(ti; qk) �q � qk��� ẑi2Y :Step 3: Next, de�ne qk+1 to be a minimizer of the modi�ed error riterion Jk(q). In order to �nd qk+1,di�erentiate Jk(q), set the result equal to zero and solve for q. Finally, all this solution qk+1, replae kwith k + 1 and repeat Step 1.Observe that, unless zq(ti; qk) = 0, for all i = 1; 2; � � � ;m the funtional Jk(q) is stritly onvex andtherefore, there exists only one solution of Dq(Jk(q)) = 0 and this solution is a minimizer. Also, theondition Dq(Jk(q)) = 0 is satis�ed if and only ifmXi=1 
C �zq(ti; qk)h� ; C �zq(ti; qk)(q � qk)��Y = � mXi=1 
C �zq(ti; qk)h� ; Cz(yi; qk)� ẑi�Yfor every h 2 ~Q.Assume for the moment that ~Q is �nite dimensional and fgj : j = 1; 2; � � � ; sg is an orthonormal basisof ~Q. Then, the equation above is equivalent tomXi=1 
C �zq(ti; qk)gj� ; C �zq(ti; qk)(q � qk)��Y = � mXi=1 
C �zq(ti; qk)gj� ; Cz(yi; qk)� ẑi�Y ; (2.1)for j = 1; 2; � � � ; s.Sine fgjg is an orthonormal basis, q 2 ~Q i� there exists a unique � = (�1; �2; � � � ; �s) 2 Rs suh thatq = Psj=1 �jgj and kqk ~Q = j�j. Therefore the parameter identi�ation problem an be reformulatedin terms of the oeÆients of q as follows. De�ne Rs (Q) = f� 2 Rs : q� = Psj=1 �jgj 2 Qg. Given�k 2 Rs (Q) (qk 2 Q) determine �k+1 2 Rs (Q) by solving equations 2:1 for q.More preisely, for eah �, let q� denote the expressionPsj=1 �jgj , andD(�) = mXi=1 M(ti; q�)� [M(ti; q�)℄ ;  2 Rs ;where for eah q 2 ~Q, t 2 [0; T ℄, M(t; q) : Rs ! Y is de�ned byM(t; q)� = [ Czq(t; q)g1 Czq(t; q)g2 � � � Czq(t; q)gs ℄2664�1�2...�s 3775



4and M(t; q)� : Y ! Rs denotes the adjoint operator of M(t; q).With this notation �k+1 an be omputed as�k+1 = �k � �D(�k)��1 mXi=1 M(ti; q�k )� [Cz(ti; q�k)� ẑi℄:= E ��k�whenever �D(�k)��1 exists.3. Convergene of the quasilinearization algorithmIn this setion we shall deal with the onvergene of the algorithm whih was introdued in the previoussetion. Two results will be presented giving suÆient onditions for the algorithm to onverge. Thefollowing two preliminary lemmas will be needed.Lemma 2. Let t 2 [0; T ℄ be �xed and M(t; q) be de�ned as above. If the mapping q ! z(t; q) from Q !ZÆ has a loally Lipshitz ontinuous Fr�ehet derivative, then the mapping � ! M(t; q�) is ontinuousfrom Rs (Q) ! L(Rs ; Y ). Moreover, for any � 2 Rs (Q), there exist positive onstants �� and L�depending on t suh thatkM (t; q�)�M (t; q~�)k � L� j�� ~�j ; 8~� 2 B (�; ��) :The same result holds for the mapping �!M(t; q�)�.Proof. Let t 2 [0; T ℄ be �xed. By hypothesis, for all � 2 Rs (Q) there exist �� > 0, L� suh thatkzq(t; q�)� zq(t; q~�)kL( ~Q;Z) < L� kq� � q~�k for every ~� 2 B(�; ��). It follows thatkM (t; q�)�M (t; q~�)k = sup2Rs; jj=1 k[M (t; q�)�M (t; q~�)℄ kY= sup2Rs; jj=1 kCzq(t; q�)q � Czq(t; q~�)qkY� kCkL(Z;Y ) sup2Rs; jj=1nkzq(t; q�)� zq(t; q~�)kL( ~Q;Z) kqk ~Qo� kCkL(Z;Y ) Lq� kq� � q~�k ~Q= kCkL(Z;Y ) Lq� j�� ~�j := L� j�� ~�jfor every ~� 2 B(�; ��). �Lemma 3. Under the same hypothesis of Lemma 2, the mapping �! D(�) is loally Lipshitz ontin-uous from Rs (Q)! L(Rs ;Rs ).Proof. The result easily follows from Lemma 2. In fat, observe that[D(�) �D(~�)℄  = mXi=1 M(ti; q�)�M(ti; q�) � mXi=1 M(ti; q~�)�M(ti; q~�)= mXi=1 M(ti; q�)� [M(ti; q�)�M(ti; q~�)℄ + mXi=1 [M(ti; q�)� �M(ti; q~�)�℄M(ti; q~�): �Before stating our main results onerning the onvergene of the quasilinearization algorithm (QA),we will need to introdue the onept of point of attration. We give its de�nition below as well as asuÆient ondition for an iteration mapping on a Banah spae to have a point of attration.



5De�nition 4. Let U be an open subset of a Banah spae X and E : U � X ! X. We say that x� is apoint of attration of the iteration xk+1 = E(xk) if there exists an open neighborhood S of x� suh thatS � U and for any x0 2 S, the iterates xk 2 U , for all k � 1 and xk ! x� as k !1.Lemma 5. (Contration mapping theorem). Let U be an open subset of a Banah spae X,E : U � X ! X, x� 2 U and suppose there is a ball B = B(x�; �) � U and � 2 (0; 1) suh thatkE(x) � x�k � � kx� x�k ; 8x 2 B:Then x� is a point of attration of the iteration xk+1 = E(xk).Proof. Whenever x0 2 B, we have that x1 � x� = E(x0)� x� � � x0 � x�, from whih x1 2 B.By indution xk+1 � x� = E(xk)� x� � � xk � x� � �k+1 x0 � x� and �k+1 x0 � x� ! 0as k !1. �Theorem 6. (Loal onvergene of the QA under exat �t-to-data assumption). Assume thehypothesis of Lemma 2 holds. Assume also that there exist an open set U � Rs (Q) and �� 2 U suhthat [D(��)℄�1 exists and J(q��) = 0. Let E be the iteration mapping de�ned at the end of the previoussetion. Then, for every � > 0, there exists a onstant Æ > 0 so that j�� ��j < Æ impliesjE(�) � ��j � Kj�� ��j2 + �j�� ��jwhere K is a onstant depending only on �� (not on �). In partiular, �� is a point of attration of theiteration �k+1 = E(�k).Proof. By de�nition E(�) = �� [D(�)℄�1( mXi=1M(ti; q�)� (Cz(ti; q�)� ẑi))whenever [D(�)℄�1 exists. Hene we have thatE(�)� �� = �� [D(�)℄�1( mXi=1M(ti; q�)� (Cz(ti; q�)� ẑi))� ��= [D(�)℄�1(D(�) (�� ��)� mXi=1 M(ti; q�)� (Cz(ti; q�)� ẑi))= [D(�)℄�1( mXi=1M(ti; q�)� [M(ti; q�) (�� ��)� Cz(ti; q�) + ẑi℄)= [D(�)℄�1( mXi=1M(ti; q�)� [M(ti; q�)�M(ti; q��)℄ (�� ��))� [D(�)℄�1( mXi=1 M(ti; q�)� [Cz(ti; q�)� Cz(ti; q��)�M(ti; q��) (�� ��)℄)� [D(�)℄�1( mXi=1 M(ti; q�)� [Cz(ti; q��)� ẑi℄) :Sine J (q��) = 0, the third term on the right hand side equals zero. Also, sine [D(��)℄�1 exists, byontinuity there exist positive onstants Æ1 and D so that for j����j < Æ1, we have that ���[D(�)℄�1��� � D.From Lemma 2 there exists M suh that kM(ti; q�)�k �M for i = 1; 2; � � � ;m, whenever j�� ��j < Æ1.Consequently,jE(�) � ��j � DM mXi=1 k[M (ti; q�)�M (ti; q��)℄ (�� ��)k+DM mXi=1 kCz(ti; q�)� Cz(ti; q��)�M(ti; q��) (�� ��)k:= A+B:



6By Lemma 2, if j�� ��j < ��� , then A � DMmL�� j�� ��j2. Also, sineM(ti; q��) (�� ��) = Czq(ti; q��) (q� � q��) ;from the de�nition of the Fr�ehet derivative zq(t; q), for every � > 0, there exists Æ2 = Æ2(�; ��) > 0 suhthat j�� ��j < Æ2 implieskCz(ti; q�)� Cz(ti; q��)�M(ti; q��) (�� ��)k � � kq� � q��k = � j�� ��j ;i = 1; 2; � � � ;m.Summarizing, we note thatjE(�) � ��j � DMm hL�� j�� ��j2 + � j�� ��jifor any � suh that j�� ��j < Æ� := min fÆ1; Æ2; ���g. By Lemma 5, �� is a point of attration of theiteration �k+1 = E(�k). �It is important to note that in Theorem 6 we have assumed an exat �t-to-data at the minimizer ��.In pratie, when working with real parameter identi�ation problems, this is not a realisti assumptiondue to possible observation, measuring and modelling errors. In the next theorem we weaken this exat�t-to-data assumption.Theorem 7. (Loal onvergene of the QA with noisy data). Assume the hypothesis of Lemma2 holds. Assume also that there exist an open set U � Rs (Q) and �� 2 U suh that D(��) is nonsingularand �� = E(��) (�xed point). Let D := supnjD(�)j�1 : j�� ��j � Æ1o as in Theorem 6 and L thesmallest onstant satisfyingkM(ti; q�)� �M(ti; q��)�k � L j�� ��j ; 8 j�� ��j < Æ1; i = 1; 2; � � � ;m;and suppose mXi=1 kCz(ti; q��)� ẑik < 1DL :Then �� is a point of attration of the iteration �k+1 = E ��k�.Proof. Following the same steps as in the proof of Theorem 8, we �nd thatjE(�) � ��j � DMm hL j�� ��j2 + � j�� ��ji+ [D(�)℄�1 mXi=1 M(ti; q�)� [Cz(ti; q��)� ẑi℄ : (3.1)But, mXi=1M(ti; q��)� [Cz(ti; q��)� ẑi℄ = 0; (3.2)sine, by assumption, �� = E(��). Combining (3:1) and (3:2) we obtainjE(�) � ��j � DMm hL j�� ��j2 + � j�� ��ji+D  mXi=1 [M(ti; q�)� �M(ti; q��)�℄ [Cz(ti; q��)� ẑi℄� DMm hL j�� ��j2 + � j�� ��ji+DL j�� ��j mXi=1 kCz(ti; q��)� ẑik= DMm hL j�� ��j2 + � j�� ��ji+  j�� ��j



7where  < 1 by hypothesis. This onludes the proof. �4. A omparison with the standard approah to quasilinearizationIn the standard literature ([4℄, [6℄), the quasilinearization algorithm is introdued in a rather di�erentmanner than the one shown in the previous setions. For the sake of ompletennes, we briey present herethis standard, although less intuitive approah. In spite of the fat that at a �rst glane, the methodslook ompletely dissimilar, we shall show that they both lead to the same iterative proess.Assume for the time being that the nonlinear term F (q; t; z) is Fr�ehet di�erentiable with respet toq and z. Given an estimate qk 2 Q of the minimizer q� 2 Q, we de�ne zk(t) = z(t; qk) and linearizeproblem (P )q about �qk; zk(t)�. This proedure yields the following IVP (P )kq(P )kq8>>>>><>>>>>: _z(t) = Azk(t) + F (qk; t; zk(t))+Fq(qk ; t; zk(t))(q � qk)+A(z(t)� zk(t)) + Fz(qk; t; zk(t))(z(t) � zk(t))z(0) = z0:Next, we de�ne zk+1(t; q) to be the solution of (P )kq and hoose qk+1 to be a minimizer of the modi�ederror riterion Jk(q) = 12 mXi=1 Czk+1(ti; q)� ẑi2 :Observing (P )kq , we see that v(t) = zk+1(t; q)� zk(t) is a solution of the IVP� _v(t) = Av(t) + Fq(qk; t; z(t; qk))(q � qk) + Fz(qk; t; z(t; qk))v(t);v(0) = 0: (4.1)This system is known as the \sensitivity equations" assoiated to the ID problem. In [5℄, Theorem 2.4,it is proved that v(t) is the Fr�ehet q-derivative of z(t; q) evaluated at qk and applied to (q � qk), i.e.,zk+1(t; q) = z(t; qk) + zq(t; qk)(q � qk):Hene, Jk(q) = 12 mXi=1 C �z(ti; qk) + zq(ti; qk)(q � qk)�� ẑi2Y ;whih is the same error riterion obtained in Setion 2.As we an see, the lassial quasilinearization approah is based upon the linearization of the initialvalue problem around the solution orresponding to the guess parameter and its derivation requiresprevious knowledge of the sensitivity equations (4.1). On the other hand the method introdued inSetion 2 is based simply upon the linearization of the solution of the IVP (P )q around the guessparameter and for the derivation of the algorithm the sensitivity equations are not neessary. Weemphasize however that in the omputational immplementation both methods make use of the derivativesof the solutions with respet to the unknown parameters and, therefore, of equations (4.1).5. An appliation example - Numerial resultsIn this setion we onsider an example in whih the quasilinearization algorithm is used to solve aparameter estimation problem in the following system of nonlinear partial di�erential equations:�utt � ��uxxt + uxxxx = f(x; t) + �2�2(� � �1)ux � 4�4u3x + 6�6u5x�x ; x 2 (0; 1); 0 � t � T(5.1a)Cv�t � k�xx = g(x; t) + 2�2�uxuxt + ��u2xt; x 2 (0; 1); 0 � t � T (5.1b)u(x; 0) = u0(x); ut(x; 0) = v0(x); �(x; 0) = �0(x); x 2 (0; 1) (5.1)u(0; t) = u(1; t) = uxx(0; t) = uxx(1; t) = 0; 0 � t � T (5.1d)�x(0; t) = �x(1; t) = 0; 0 � t � T: (5.1e)



8These equations arise from the onservation laws of linear momentum and energy in a one-dimensionalshape memory body. The funtions u and � represent displaement and absolute temperature, respe-tively. Subindex \x" and \t" denote partial derivatives and �, Cv , k, �, , �2, �4, �6, �1 are positiveonstants depending on the material being onsidered. The funtions f(x; t) and g(x; t) denote dis-tributed fores and distributed heat soures. For a detailed explanation of the model and the meaningof the parameters involved we refer the reader to [9℄ and the referenes therein.We are interested in using experimental data to estimate the parameters �2, �4, �6 and �1. We notehere that these are non-physial parameters and therefore they annot be estimated from laboratoryexperiments.Next, we shall formulate the IBVP (5.1) as an abstrat nonlinear Cauhy Problem in an appropriateBanah Spae. In partiular we de�ne the admissible parameter set asQ := �q = (�2; �4; �6; �1) jq 2 R4+	,the state spae Z as the Hilbert spae H10 (0; 1) \H2(0; 1)� L2(0; 1)� L2(0; 1) with the inner produt*0�uv�1A ;0� ~u~v~�1A+ :=  Z 10 u00(x)~u00(x) dx+ � Z 10 v(x)~v(x) dx+ Cvk Z 10 �(x)~�(x) dx:The operator A on Z is de�ned byD(A) = 8<:0�uv�1A 2 Z ������ u 2 H4(0; 1); u(0) = u(1) = u00(0) = u00(1) = 0v 2 H10 (0; 1) \H2(0; 1)� 2 H2(0; 1); �0(0) = �0(1) = 0 9=;and for z = 0�uv�1A 2 D(A), A0�uv�1A := 0� 0 I 0��D4 �D2 00 0 kCvD21A0�uv�1A ;where Dn := �n�xn .We also de�ne z0(x) = 0�u0(x)v0(x)�0(x)1A and F (q; t; z) : Q� [0; T ℄�D ! Z byF (q; t; z) = 0� 0f2(q; t; z)f3(q; t; z)1A ;where �f2(q; t; z)(x) = f(x; t) + �2�2(� � �1)ux � 4�4u3x + 6�6u5x�x ;Cvf3(q; t; z)(x) = g(x; t) + 2�2�uxvx + ��v2xand D = H10 (0; 1) \H2(0; 1)�H1(0; 1)�H1(0; 1).With the above notation, the IBVP (5.1a-e) is equivalent to the following abstrat Cauhy problem inthe Hilbert spae Z: (P)� ddtz(t) = Az(t) + F (q; t; z); 0 � t � Tz(0) = z0: (5.2)We assume the following standing hypothesis.(H2). For eah �xed t � 0, the funtions f(x; t), g(x; t) are in L2(0; 1) and there exist nonnegativefuntions Kf (x), Kg(x) 2 L2(0; 1) suh thatjf(x; t1)� f(x; t2)j � Kf (x)jt1 � t2j; jg(x; t1)� g(x; t2)j � Kg(x)jt1 � t2jfor all x 2 (0; 1), t1; t2 2 [0; T ℄.The following results an be easily derived from theorems 3.7 and 3.11 in [10℄ with only slight modi�-ations in order to take into aount for the di�erent boundary onditions being onsidered here. Sinethe modi�ations needed are trivial and not important for the goals pursued by this artile, we do notgive details here.



9Theorem 11. The operator A de�ned above generates an analyti semigroup T (t) in Z and if (H2)holds, then the mapping F as de�ned above satis�es (H1) for any Æ 2 ( 34 ; 1).The following theorem shows that the operator A and the funtion F satisfy ertain regularity ondi-tions, whih, in view of Theorems 2.4 and 3.1 in [5℄, ensure the existene and Lipshitz ontinuity of theFr�ehet derivative of the mapping q ! z(t; q). This result, together with Theorems 6 and 7, will lead tothe loal onvergene of the quasilinearization algorithm to the optimal parameter.Theorem 12. Let Z, A and F (q; t; z) be as de�ned above and assume (H2) holds. Then the mapping(q; z(�))! F (q; �; z(�)) from Q�L1(0; T : ZÆ) into L1(0; T : Z) is Fr�ehet di�erentiable in both variables.Also, the mappings (q; z(�)) ! Fq(q; �; z(�)) and (q; z(�)) ! Fz(q; �; z(�)) are loally Lipshitz ontinuousfrom Q� L1(0; T : ZÆ) into L1(0; T : L( ~Q; Z)) and from Q� L1(0; T : ZÆ) into L1(0; T : L(ZÆ ; Z)),respetively.Proof. This result follows immediately observing that f2(q; t; z) and f3(q; t; z), as previously de�ned, areFr�ehet di�erentiable with respet to q and z. Moreover, these derivatives an be omputed expliitelyand are given by:Dzf2(q; t;0�uv�1A)0� ~u~v~�1A = f2;u~u+ f2;v~v + f2;�~�;Dzf3(q; t;0�uv�1A)0� ~u~v~�1A = f3;u~u+ f3;v~v + f3;�~�;Dqf2(q; t;0�uv�1A) = 1� h2�0u0 + 2(� � �1)u00 ; �12 (u0)2 u00 ; 30 (u0)4 u00 ; �2�2u00i ;Dqf3(q; t;0�uv�1A) = 1Cv [2�u0v0 ; 0 ; 0 ; 0℄ ;where the linear operators fi;u, fi;v and fi;�, i = 2; 3 are given byf2;u = 1� n2�2�0D + 2�2(� � �1)D2 � 24�4u0u00D � 12�4 (u0)2D2+120�6 (u0)3 u00D + 30�6 (u0)4D2o ;f2;v = 0f2;� = 1� f2�2u0D + 2�2u00g ;f3;u = 1Cv f2�2�v0Dgf3;v = 1Cv f2�2�u0D + 2��v0Dg ;f3;� = 1Cv f2�2u0v0g : �In all the examples that follow we make use of the parameter values reported by F. Falk in [FALK℄ forthe alloy Au23Cu30Zn47. These values are: �2 = 24 J m�3 K�1, �4 = 1:5� 105 J m�3 , �6 = 7:5� 106J m�3 K�1, �1 = 208 K, Cv = 2:9 J m�3 K�1, k = 1:9 w m�1 K�1, � = 11:1 g m3, � = 1 and = 10�12 J m�1. We want to estimate q� = (�2; �4; �6; �1) = (24; 1:5� 105; 7:5� 106; 208).Example 1: Exat data.For this example we take u0 � 0, v0 � 0, �0 � 200 K, g(x; t) � 0,f(x; t) = � 1� 105; if 0:4 � x � 0:6;0; otherwise



10and T = 0:01. First, we obtain u(t; x; q�) and �(t; x; q�) by numerially solving the problem. For thispurpose we make use of the spetral method proposed in [7℄. The observations are then taken to beẑi = ��u(xj ; ti; q�)�(xj ; ti; q�)��9j=1, where ti = 0:001 i, i = 1; 2; � � � ; 10. We start with an initial estimateq0 = (50; 3�105; 15�106; 420), approximately equal to twie q�. The results of the iterations produedby the quasilinearization algorithm are shown in Table 1 and Figures 1.a-d. Figure 2b shows a omparisonbetween u(x; T ; q�) and u(x; T ; qk) while in Figure 2b �(x; T ; q�) and �(x; T ; qk) are drawn for di�erentvalues of k.
k �2 �4 �6 �1 J(qk)0 50.0000 300000 1.50000e+07 420.000 1994.69001 16.1807 228111 1.40769e+07 459.904 611.19502 26.1790 222964 8.71784e+06 33.096 280.82203 25.3531 246241 8.83171e+06 126.468 15.31564 24.2770 178223 7.87660e+06 181.091 7.13135 24.0166 151184 7.51451e+06 206.550 0.62106 24.0012 150073 7.50096e+06 207.927 0.01227 24.0001 150006 7.50008e+06 207.994 0.00308 24.0001 150002 7.50003e+06 207.998 0.00299 24.0000 150002 7.50002e+06 207.998 0.002910 24.0000 150002 7.50002e+06 207.998 0.002911 24.0000 150002 7.50002e+06 207.998 0.002912 24.0000 150002 7.50002e+06 207.998 0.0029Table 1: Values of the parameters and of the error riterion at di�erent iteration steps.
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(c) (d)Figure 1: Evolution of the iterations for Example 1.
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Figure 2: Displaement (a) and Temperature (b) at T = 0:01 for q = qk, k = 0; 3; 7:
Example 2: Noisy data.This example is analogous to Example 1, exept that now we add random noise to the observa-tion data in order to simulate measuring errors. More preisely, the observations are taken to beẑi = ��u(xj ; ti; q�) + ri;j�(xj ; ti; q�) + ~ri;j ��9j=1, where ri;j and ~ri;j are random numbers uniformly distributed in(�0:05u; 0:05u) and ��0:05 �; 0:05 ��, respetively, with u = 190 10Xi=1 9Xj=1 ju(xi; ti; q�)j and � = 190 10Xi=1 9Xj=1 �(xi; ti; q�).The initial estimate is again q0 = (50; 3� 105; 15� 106; 420). The results of the iterations are shown inTable 2, and Figure 3. Figure 4a shows a omparison between u(x; T ; q�) and u(x; T ; qk) while in Figure4b �(x; T ; q�) and �(x; T ; qk) are drawn for di�erent values of k.



12 k �2 �4 �6 �1 J(qk)0 50.0000 300000 1.50000e+07 420.000 1987.2401 16.5263 251533 1.43413e+07 450.975 604.5702 26.7351 173032 7.92651e+06 77.3584 261.5913 25.1282 223785 8.54573e+06 148.386 111.6194 24.2875 176007 7.84280e+06 189.479 111.0305 24.4436 183683 7.95702e+06 183.663 110.9856 24.4070 180771 7.91592e+06 186.193 110.9777 24.4184 181677 7.92857e+06 185.411 110.9798 24.4151 181408 7.92483e+06 185.645 110.9789 24.4161 181487 7.92593e+06 185.576 110.97910 24.4158 181464 7.92560e+06 185.596 110.97811 24.4159 181471 7.92570e+06 185.590 110.97812 24.4159 181469 7.92567e+06 185.592 110.97813 24.4159 181469 7.92568e+06 185.592 110.978Table 2: Values of the parameters and of the error riterion at di�erent iteration steps.
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Figure 4: Displaement (a) and Temperature (b) at T = 0:01 for q = qk, k = 0; 3; 7:Example 3: Comparison between diret and indiret methods.In this example simultaneously we solve the ID problem using an indiret method and the algorithmproposed in Setion 2. The purpose is to illustrate the di�erent onvergene rates of the two approahes.We take u0 � 0, v0 � 0, �0 � 200, f � g � 0. The indiret method onsits of approximating the solutionof the dynami equations using the algorithm proposed in [7℄ and applying afterwards the optimizationalgorithm of Hooke and Jeeves [3℄ to solve the resulting optimization problem. We obtain ẑi as in Example1 and start with the initial estimate q0 = �25; 2� 105; 9� 106; 220�. The results of the iterations areshown in Table 3.k �2 �4 �6 �1D I D I D I D I0 25 25 200000 200000 9e+06 9e+06 215 21512 24.004 24.1250 149991 176000 7500020 8865000 207.999 202.140 24.004 24.9375 149991 161500 7500020 7537500 207.999 202.1100 24.004 25.7344 149991 154000 7500020 6907500 207.999 202.1500 24.004 24.8140 149991 149738 7500020 7333770 207.999 206.5641000 24.004 24.4651 149991 149967 7500020 7462530 207.999 207.3552000 24.004 24.1638 149991 150040 7500020 7499950 207.999 207.8013000 24.004 24.0651 149991 150011 7500020 7500490 207.999 207.924Table 3: Comparison of the onvergene speeds between a diret and an indiret method.6. ConlusionsWe have introdued a new approah for identifying the unknown parameter q in nonlinear abstratCauhy problems of the type _z(t) = Az(t) + F (q; t; z(t)). This approah has two main advantages overlassial methods. First of all it is muh more intuitive sine it is based upon linearization of the solutionabout an initial guess parameter rather than the linearization of the whole problem about a partiularsolution. Seondly, unlike in the lassial setting, the derivation of the algorithm does not rely upon thesensitivity equations.We have also derived suÆient onditions for the onvergene of the algorithm in terms of the regularityof the solutions with respet to the unknown parameter.Finally, an appliation was onsidered in whih the nonphysial parameters that de�ne the free energypotential in a mathematial model for shape memory alloys are estimated. Also, several numerialexamples are presented and onvergene speeds are ompared with those of an indiret method.Referenes[1℄ H. T. Banks, J. A. Burns, E. M. Cli�, \Parameter Estimation and Identi�ation for Systems with Delays", SIAMJournal on Control and Optimization, 19(1981), pp. 791-828.
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