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Dedicated to Ivo Babuška on the occasion of his 80th birthday.
Abstract

We present a variational framework for shape optimization problems that establishes clear and explicit connections among the con-
tinuous formulation, its full discretization and the resulting linear algebraic systems. Our approach hinges on the following essential fea-
tures: shape differential calculus, a semi-implicit time discretization and a finite element method for space discretization. We use shape
differential calculus to express variations of bulk and surface energies with respect to domain changes. The semi-implicit time discreti-
zation allows us to track the domain boundary without an explicit parametrization, and has the flexibility to choose different descent
directions by varying the scalar product used for the computation of normal velocity. We propose a Schur complement approach to solve
the resulting linear systems efficiently. We discuss applications of this framework to image segmentation, optimal shape design for PDE,
and surface diffusion, along with the choice of suitable scalar products in each case. We illustrate the method with several numerical
experiments, some developing pinch-off and topological changes in finite time.
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1. Shape optimization and gradient flows

Shape optimization problems are ubiquitous in science,
engineering and industrial applications. They can be for-
mulated as minimization problems with respect to the
shape of a domain X in Rd . If yðXÞ is the solution of a
boundary value problem in X

LyðXÞ ¼ 0; ð1Þ

and JðX; yðXÞÞ is a cost functional, then we consider the
minimization problem

X� 2 Uad : JðX�; yðX�ÞÞ ¼ inf
X2Uad

JðX; yðXÞÞ; ð2Þ
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where Uad is a set of admissible domains in Rd . If the prob-
lem is purely geometric, namely there is no state constraint
(1), then we simply denote the functional JðXÞ. We refer to
the books [11,15,19,21,24] for a description of this problem
and numerous applied examples (see e.g. [16,20]). In any
case, we review some basic material in Section 2 and dis-
cuss three relevant examples throughout the paper.

Our main goal is to present a variational method which
explicitly and clearly leads first to design a flow XðtÞ, start-
ing from an initial configuration Xð0Þ to a relative
minimum Xð1Þ, that decreases the function t 7! JðXðtÞ;
yðXðtÞÞÞ, and next to discretize in time and space, thereby
obtaining a computable descent direction, and a sequence
of approximate domains fXng. Our approach hinges on
three essential features:

• Shape sensitivity analysis: This allows us to express vari-
ations of bulk and surface energies with respect to
domain changes and formalize the notion of shape
derivative and shape gradient.

• Semi-implicit time discretization: This is crucial in order
to maintain an implicit computation of geometric quan-
tities such as mean curvature and normal velocity but
not the entire geometry. This can be realized without
explicit parametrization of the domain boundary, and
is sufficiently flexible to accommodate several scalar
products for the computation of normal velocity
depending on the application.

• Adaptive finite element method for space discretization:
This is important for the intrinsic computation of mean
curvature as well as the control of local meshsize to
increase resolution.

We discuss shape sensitivity in Section 2, with special
emphasis on our three sample problems, and present the
time and space discretization of the resulting gradient flows
in Section 3. We finally conclude in Section 4 with several
numerical experiments that illustrate performance of the
method, choice of scalar products, and large domain defor-
mations sometimes leading to pinch-off and topological
change.

In the rest of the introduction we briefly describe our
three basic model problems and the notion of gradient
flow. We now introduce our examples: image segmenta-
tion, optimal shape design for PDE, and surface diffusion.
They are simple models of shape optimization with quite
distinct behavior and requirements, which can nonetheless
be studied within a unified framework. We make also expli-
cit the concept of shape derivative of JðXÞ in the direction
of a normal velocity V, namely

dJðX; V Þ ¼
Z

C
GV dS; ð3Þ

but derive the expressions of G in Section 2 for each case.
We then indicate how to exploit this information to design
a gradient flow. Throughout the paper we will denote with
C that part of the boundary of X which is free to deform,
with j the sum of the principal curvatures of C and with
~m the outer unit normal of C; thus V :¼ ~V �~m. We use the
sign convention that a circle with outward normal has po-
sitive mean curvature. The symbol h�; �i stands for either
the L2-scalar product or a duality pairing on C.

1.1. Image segmentation

Image segmentation has been one of the central prob-
lems of image processing ever since the inception of this
discipline. Given an image the goal is to identify the
‘‘objects’’ or homogeneous regions with respect to some
image features, such as image intensity, texture etc. The
geodesic active contour model proposed in [9] addresses this
problem in an energy minimization context and identifies
object boundaries by a set of curves in 2D or surfaces in
3D. In the following we cast this model within our
framework.

Let IðxÞ : D � Rd ! R be a given smoothed-out image
intensity function on an open and bounded image domain
D. Since values of IðxÞ vary significantly at object bound-
aries, the image gradient rIðxÞ gets large at these locations.
We can use this to define the edge detector function HðxÞ
as follows:

HðxÞ ¼ hðjrIðxÞjÞ; hðsÞ ¼ 1

1þ s2
;

so that HðxÞ is small on object boundaries and HðxÞ � 1 on
smooth regions of the image. We now associate an energy
JðXÞ to a given curve C and enclosed domain X so that ob-
ject boundaries correspond to local minima of JðXÞ. Such
an energy is given by the geometric functional

JðXÞ :¼
Z

C
HðxÞdS þ k

Z
X

HðxÞdx; k P 0: ð4Þ

Note that the first integral is minimized when C coincides
with the object boundaries in the image. It is also common
to include the domain integral in the optimization process
because it speeds up the convergence of the curve to the ob-
ject boundaries and helps detection of object concavities;
see [5,9] for more details. We will see in Section 2.2.1 that
G in (3) has the explicit form

G ¼ ðjþ kÞHðxÞ þ omHðxÞ: ð5Þ
1.2. Optimal shape design for PDE

Motivated by the optimal shape design of a drug eluting
stent, we consider an extremely simplified problem, still
presenting some of the main mathematical difficulties one
has to face in trying to solve a more realistic situation
(for more details on the mathematical modelling see e.g.
[27]). A drug eluting stent is a normal metal stent that
has been coated with a drug that is known to interfere with
the process of restenosis of the artery. Roughly speaking in
optimal shape design for drug eluting stents, one is inter-
ested in optimizing some of the geometric properties of
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the stent in order to control the distribution of the drug
released in the arterial wall.

In this context X is the cross-section of part of the arte-
rial wall, C is the boundary of the cross-section of a stent
wire, D is the control region for the drug distribution and
zg is some clinical data to match.

Let Xi, i ¼ 1; 2 be sufficiently regular open bounded sets
of Rd , such that X1 � X2. We denote by X ¼ X2 n X1 and
oX ¼ C [ R, where C ¼ oX1 and R ¼ oX2 n C. Finally, let
D be an open bounded set of Rd such that D �� X. Let
us now define the set Uad of admissible domains in Rd : it
contains all domains obtained through a deformation of
X by keeping R fixed and by moving only C in such a
way that C \ D ¼ ;.

We are interested in the solution of a simple shape opti-
mization problem of the form (2), associated to the energy
functional

JðX; yðXÞÞ :¼ 1

2

Z
D

yðXÞ � zg

� �2
dxþ c

Z
C

dS; ð6Þ

where c > 0 is a penalization parameter for the length of the
moving boundary C, zg : D! R is a given function and
yðXÞ is the solution of the following elliptic problem on X

�Dy ¼ 0 in X; y ¼ 0 on R; omy ¼ 1 on C:

ð7Þ

We will see in Section 2.2.2 that G in (3) has the explicit
form

G :¼ �rCyrCp þ jp þ jc; ð8Þ

where p is the solution of a suitable elliptic problem (the
adjoint problem) on the domain X (see (42)).

1.3. Surface diffusion and epitaxially stressed solids

A very simple model of epitaxially stressed thin films can
be described as follows [4,8,25]. Consider an elastic solid
with lattice spacing different from that of a substrate. This
mismatch induces stresses in the solid. On the other hand,
material particles on the free surface C in contact with gas
are free to move and rearrange their position so as to min-
imize surface tension, thereby yielding a plastic deforma-
tion of the solid. Phenomenological arguments lead to
the fourth order (highly nonlinear) PDE

V ¼ DCðcjþ �Þ; ð9Þ

where c is the surface tension constant and � is the elastic
energy density on C. In this paper we consider a simplified
situation in that elasticity is replaced by the Laplace oper-
ator in X and thus � :¼ jryðXÞj2, where yðXÞ solves the
boundary value problem

� DyðXÞ ¼ 0 in X;

omyðXÞ ¼ 0 on C; yðXÞ ¼ g on R; ð10Þ

where R is that part of the boundary of X in contact with
the substrate (to mimic a misfit). We will see in Section
2.2.3 that the physical law (9) is the H�1-gradient flow
for the energy functional

JðX; yðXÞÞ :¼
Z

X
jryðXÞj2 þ c

Z
C

dS ð11Þ

and we will show in Section 2.2.3 that G in (3) has the
explicit form

G :¼ jryðXÞj2 þ cj: ð12Þ
1.4. Shape gradient flows

We observe that in all the examples above, the shape
derivative with respect to a normal velocity V is given by
(3) with G of the form

G ¼ gðx;XÞjþ f ðx;XÞ: ð13Þ

This explicit expression can be exploited to deform X in
the direction V of maximal decrease of the functional
JðX; yðXÞÞ. Instead of considering the simple-minded gra-
dient flow V ¼ �G we allow for more flexibility by intro-
ducing a scalar product bð�; �Þ on C and letting V be the
solution to

bðV ;W Þ ¼ �
Z

C
GW ; 8W 2 BðCÞ; ð14Þ

where BðCÞ is the Hilbert space induced by bð�; �Þ. Here C
(and hence G) implicitly depend on ~V ¼ V~m by means of
a suitable system of ODE describing the deformation of
X through V. Since bð�; �Þ is a scalar product
0 6 bðV ; V Þ ¼ �

R
C GW ¼ �dJðG; V Þ and thus V is a des-

cent direction. If B is an (elliptic) operator such that
hBV ;W i ¼ bðV ;W Þ; then (14) is equivalent to solving the
following elliptic PDE on the surface C for the normal
velocity V:

BV ¼ �G: ð15Þ

In this case, the gradient flow given by (14) is called b- or
B-gradient flow.

We point out that so far we have not discretized the
underlying problem but still have been able to find an equa-
tion such that its solution V turns out to be a descent direc-
tion for the domain shape, the gradient descent direction.

The next step is to discretize in time and space in order
to obtain a fully practical algorithm. We will do first the
time discretization. Since the mean curvature is the surface
Laplacian of the position vector, computing it explicitly
leads to instabilities similar to those found in the discretiza-
tion of the heat equation, where, roughly speaking, the
time discretization step is forced to be smaller than the
square of the minimum space discretization parameter.
When the time discretization step is above that threshold,
spurious oscillations at the mesh level appear on the solu-
tion. Since we plan to use adaptive meshes for representing
the surfaces with the least amount of degrees of freedom,
the space discretization parameter might be very small at
certain areas. Such a restriction on the time step will make
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computations very slow and an explicit computation of the
curvature will destroy the regularity of the discrete surface
C. We will thus use a time discretization keeping an implicit
computation of curvature in (13). Such a discretization has
already been successfully used for mean curvature flow [13]
and surface diffusion [6]. An implicit treatment of the cur-
vature while keeping the other geometric quantities explicit
provides a natural linearization of the problem. This linear-
ization process is fully discussed in Section 3.3 and is fol-
lowed by space discretization via finite element methods
in Section 3.5. The ensuing variational approach is rather
flexible to accommodate several scalar products bð�; �Þ
depending on the application, as discussed in Section 3.3
and 4. Roughly speaking we can distinguish between appli-
cations where the gradient flow has a physical meaning
(e.g. surface diffusion), and where it does not (e.g. image
segmentation or optimal shape design for PDE). In the first
case the choice of the scalar product is dictated by physics,
whereas in the latter case it can be driven by issues concern-
ing the well-posedness of (15), as discussed in the example
of optimal shape design for PDE, or by stability and rate
of convergence of the resulting numerical scheme, as
described in the example of image segmentation.

In designing a numerical scheme (e.g. gradient method)
for the approximation of the continuous gradient flow (14),
and hence the construction of a sequence of domains
fXngnP0 aiming at convergence to X� ¼ argminX2Uad

JðXÞ,
the following chief question arises:

Given a domain X; is it possible to choose a vector field

~V deforming X into ~X such that Jð~XÞ < JðXÞ? ð16Þ

A key step in answering this question is the shape sensitiv-
ity analysis of the mapping X 7! JðXÞ, which is briefly re-
viewed in Section 2.

2. Shape sensitivity analysis

In Section 2.1 we introduce some elements of shape cal-
culus, along with related references, necessary to properly
carry out the shape sensitivity analysis of the model prob-
lems in Section 2.2.

2.1. Shape differential calculus

We start by briefly recalling some useful notions of dif-
ferential geometry. Let us be given h 2 C2ðCÞ and an exten-
sion ~h of h, ~h 2 C2ðUÞ and ~hjC ¼ h on C where U is a
tubular neighborhood of C in Rd . Then the tangential gra-
dient rCh of h is defined as follows:

rCh ¼ r~h� om
~h~m

� �
jC;

where~m denotes the normal vector to C. For an open set of
class C2 with boundary C, we define the tangential diver-

gence of ~W by

divC
~W ¼ div~W �~m � D~W �~m

� �
jC; ð17Þ
where D~W denotes the Jacobian matrix of ~W . Finally, if
D2~h denotes the Hessian of ~h, then the Laplace–Beltrami

operator DC on C is defined as follows:

DCh ¼ divCðrChÞ ¼ D~h�~m � D2~h �~m� jom
~h

� �
jC: ð18Þ
2.1.1. The velocity method

We consider now a hold-all domain D, which contains
X, and a vector field ~V defined on D, which is used to define
the continuous sequence of perturbed sets fXtgtP0, with
X0 :¼ X. Each point x 2 X0 is continuously deformed by
an ODE defined by the field ~V . The parameter which con-
trols the amplitude of the deformation is denoted by t (a
fictitious time).

We now consider the system of ODEs

dx
dt
¼ ~V ðxðtÞÞ; 8t 2 ½0; T �; xð0Þ ¼ X ; ð19Þ

where X 2 X0 ¼ X. This defines the mapping

xð�; tÞ : X 2 X! xðX ; tÞ 2 Rd ð20Þ
and also the perturbed sets

Xt ¼ fxðX ; tÞ : X 2 X0g: ð21Þ
We recall that the family of perturbed sets has its regularity
preserved for ~V smooth enough [24]: if X0 is of class Cr,
r 6 k, then for any t 2 ½0; T �, Xt is also of class Cr.

2.1.2. Derivative of shape functionals

Let JðXÞ be a shape functional; examples of such func-
tionals have been given in Section 1. The Eulerian deriva-
tive, or shape derivative, of the functional JðXÞ at X, in
the direction of the vector field ~V is defined as the limit

dJðX;~V Þ ¼ lim
t!0

1

t
JðXtÞ � JðXÞð Þ: ð22Þ

Let B be a Hilbert space of perturbating vector fields. The
functional JðXÞ is said to be shape differentiable at X in B if
the Eulerian derivative dJðX;~V Þ exists for all ~V 2 B and the
mapping ~V ! dJðX;~V Þ is linear and continuous on B. An
analogous definition can be introduced for functionals
JðCÞ depending on a d � 1 manifold C as an independent
variable.

We now recall a series of results from shape differential
calculus in Rd . We start with the shape derivative of
domain and boundary integrals of functions not depending
on the geometry.

Lemma 2.1 [24, Prop. 2.45]. Let / 2 W 1;1ðRdÞ and X � Rd

be open and bounded. Then the functional

JðXÞ ¼
Z

X
/dx ð23Þ

is shape differentiable. The shape derivative of J is given by

dJðX;~V Þ ¼
Z

X
div ð/~V Þdx: ð24Þ

If C ¼ oX is of class C1 and V ¼ ~V �~m, then
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dJðX;~V Þ ¼
Z

C
/V ds: ð25Þ

Lemma 2.2 [24, Prop. 2.50 and (2.145)]. Let w 2 W 2;1ðRdÞ
and C be of class C1. Then the functional

JðCÞ ¼
Z

C
wdS ð26Þ

is shape differentiable and

dJðC;~V Þ ¼
Z

C
rw � ~V þ wdivC

~V
� �

dS

¼
Z

C
omwþ wjð ÞV dS: ð27Þ

Let us now consider more general functionals JðXÞ,
which are useful when we consider problems of optimal
shape design for partial differential equations, like the
one introduced in Section 1.2. In particular we are inter-
ested in computing sensitivities for functionals of the
form

JðXÞ ¼
Z

X
/ðx;XÞdx; or JðCÞ ¼

Z
C

wðx;CÞds; ð28Þ

where the functions /ð�;XÞ : X! R and wð�;CÞ : C! R

themselves depend on the geometric variables X and C,
respectively. To handle the computation of the sensitivities
of such functionals we need to take care of the derivatives
of / and w with respect to X and C.

First of all we recall the notion of material derivative
_/ðX;~V Þ of / at X in direction ~V . It is defined as follows
[24, Def. 2.71]:

_/ðX;~V Þ ¼ lim
t!0

1

t
/ðXtÞ � xð�; tÞ � /ðX0Þð Þ; ð29Þ

where the mapping xð�; tÞ is defined as in (20). A similar def-
inition holds for functions wð�;CÞ which are defined on
boundaries C instead of domains X.

Let us now now recall the notion of shape derivative

/0ðX;~V Þ of / at X in the direction ~V . It is defined to be
[24, Def. 2.85]

/0ðX;~V Þ ¼ _/ðX;~V Þ � r/ � ~V : ð30Þ

Accordingly, for boundary functions wðCÞ : C! R, the
shape derivative is defined to be [24, Def. 2.88]

w0ðC;~V Þ ¼ _wðC;~V Þ � rCw � ~V jC: ð31Þ

With these notions we are able to calculate the Eulerian
derivatives for the above shape functionals.

Proposition 2.1 [24, Sect. 2.31, 2.33]. Let / ¼ /ðX; xÞ be so

that the material derivative _/ðX;~V Þ and the shape derivative

/0ðX;~V Þ exist. Then, the cost functional in (28) is shape

differentiable and we have

dJðX;~V Þ ¼
Z

X
/0ðX;~V Þdxþ

Z
C

/V dS: ð32Þ
For boundary functions uðCÞ we get

dJðC;~V Þ ¼
Z

C
u0ðC;~V ÞdS þ

Z
C

juV dS; ð33Þ

whereas if uð�;CÞ ¼ wð�;XÞjC, then we obtain

dJðC;~V Þ ¼
Z

C
w0ðX;~V ÞjCdS þ

Z
C

omwþ jwð ÞV dS: ð34Þ

To use this Proposition we need to be able to compute the
shape derivative of solutions yðXÞ to elliptic boundary value
problems. We consider now a simple case, though sufficient
for our later developments: let f ; g; h be functions defined on
Rd , i.e. they do not depend on X, and let yðXÞ satisfy

� DyðXÞ ¼ f in X;

yðXÞ ¼ g on R; omyðXÞ ¼ h on C: ð35Þ
Lemma 2.3 ([26,24, Sect. 3.1 and 3.2]). The shape deriva-

tive of yðXÞ in (35), y0 :¼ y0ðX; ~V Þ, satisfies the following

boundary value problem

�Dy 0 ¼ 0; in X;

y0 ¼ V omðg � yðXÞÞ on R;

omy0 ¼ divCðVrCyðXÞÞ þ ðjhþ omhþ f ÞV on C:

8><
>:

ð36Þ

Let us conclude this part with a Riesz representation

theorem, the Hadamard–Zolésio formula (3). We state
the theorem without regularity assumptions and give below
explicit expressions for G.

Lemma 2.4 ([26, Prop. 2.21,24, Sect 2.11 and Th.
2.27]). The Eulerian derivative of a domain or boundary

functional always has a representation of the form

dJðX;~V Þ ¼ hG; V iC; ð37Þ

where we denote by h�; �iC a duality pair on C; that is, the

Eulerian derivative is concentrated on C.
2.2. Shape derivatives of the model problems

For each shape functional introduced in Section 1.2
we compute the shape derivative and thereby obtain the
explicit expressions (5), (8), and (12) of the Riesz represen-
tative G.

2.2.1. Image segmentation

According to Lemmas 2.1 and 2.2, we can write the
shape derivative of JðXÞ as follows:

dJðX; V Þ ¼
Z

C
ðjþ kÞHðxÞ þ omHðxÞð ÞV dS: ð38Þ

Then the shape gradient is

G ¼ ðjþ kÞHðxÞ þ omHðxÞ; ð39Þ

and has the form (13) with g ¼ HðxÞ and f ¼ kHðxÞþ
omHðxÞ.
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2.2.2. Optimal shape design for PDE

Let us now compute the shape derivative of the
functional

JðX; yðXÞÞ ¼ J 1ðX; yðXÞÞ þ J 2ðXÞ

¼ 1

2

Z
D
ðyðXÞ � zgÞ2dxþ c

Z
C

dC; ð40Þ

where yðXÞ solves the elliptic problem (7).
Let us first consider the shape derivative y 0 :¼ y 0ðX;~V Þ at

X in the direction ~V , where we allow ~V to be nonzero only
in a neighborhood of C (i.e. D and R are both assumed to
be fixed). According to Lemma 2.3, y 0 is the solution of the
following elliptic problem:

�Dy0 ¼ 0 in X;

y 0 ¼ �V omy ¼ 0 on R;

omy 0 ¼ divCðVrCyÞ þ jV on C:

8><
>: ð41Þ

In order to relate the L2-norm in J 1ðX; yðXÞÞ it is custom-
ary to introduce an adjoint problem

�Dp ¼ vDðy � zgÞ in X;

p ¼ 0 on R;

omp ¼ 0 in C;

8><
>: ð42Þ

whence

dJ 1ðX; V Þ ¼
Z

D
ðy � zgÞy0 ¼ �

Z
X

Dpy 0

¼
Z

X
rpry0 �

Z
C

ompy 0 �
Z

R
ompy 0

ðy 0 ¼ 0 on R; omp ¼ 0 on CÞ ¼ �
Z

X
Dy0p þ

Z
C

omy 0p þ
Z

R
omy0p

ðp ¼ 0 on RÞ ¼ �
Z

X
Dy 0p þ

Z
C

omy0p

¼
Z

C
ðdivCðVrCyÞ þ jV Þp

¼
Z

C
ð�rCyrCp þ jpÞV :

On using Lemma 2.2 we have

dJ 2ðX; V Þ ¼ c
Z

C
jV dC: ð43Þ

Hence Lemma 2.4 holds with the Riesz representation
function

G ¼ �rCyrCp þ jp þ jc; ð44Þ
which has the form (13) with g ¼ p þ c and f ¼ �rCyrCp.

2.2.3. Surface diffusion and epitaxially stressed solids

We now compute the shape derivative of the functional
(11), namely,

JðX; yðXÞÞ ¼ J 1ðX; yðXÞÞ þ J 2ðXÞ

¼
Z

X
jryðXÞj2 þ c

Z
C

dS; ð45Þ
with yðXÞ satisfying (10). It follows from (36) that the
shape derivative y 0 :¼ y0ðX;~V Þ of yðXÞ satisfies

�Dy 0 ¼ 0 in X;

y 0 ¼ 0 on R;

omy 0 ¼ divCðVrCyÞ on C:

ð46Þ

Consequently, using (32), we obtain

dJ 1ðX;~V Þ ¼ 2

Z
X
ryry 0 þ

Z
C
jryj2V

andZ
X
ryry0 ¼ �hDy; y0i þ

Z
C

y0omy ¼ 0

because of (10). Since the shape derivative for J 2ðXÞ obeys
(43), we have thus derived the expression

dJðX;~V Þ ¼
Z

C
jryj2 þ cj
� �

V ds:

This implies that the shape gradient G is

G ¼ jryj2 þ cj

and has the form (13) with g ¼ c and f ¼ jryj2.
When considering bð�; �Þ as the H�1ðCÞ inner product,

the gradient flow, written in strong form, reads V ¼
DCðjryj2 þ cjÞ, which coincides with Eq. (9). So in this
case, the H�1 gradient flow corresponding to the functional
(45) results in the surface diffusion flow, which had been
previously derived from physics.

3. Discrete gradient flows

Now we are ready to answer the chief question (16) and
provide a strategy to build a sequence fXngnP0 such that
JðXnþ1Þ 6 JðXnÞ. We first consider in Section 3.1 an impli-
cit time discretization, as proposed by Luckhaus [18] and
Almgren et al. [1] for the Stefan problem with Gibbs–
Thomson law. This technique is also related to the idea
of minimizing movements first introduced by E. De Giorgi,
see e.g. [2,3].

Since the resulting scheme is not practical, we then study
an explicit time linearization in Section 3.2, followed in
Section 3.3 by a semi-implicit time discretization which
keeps geometric quantities such as velocity and curvature
implicit but the rest of the geometry explicit.

3.1. Implicit time discretization

Let sn be a given variable time step and tnþ1 ¼ tn þ sn.
Before introducing the time discretization we observe that
one step of the implicit Euler method for the heat equation
coincides with the minimization of the functional

v! 1

2

Z
X
jrvj2 þ 1

2sn

Z
X
jun � vj2

(see [18,1]). Motivated by this, we let the domain Xnþ1 be
the solution of the following penalized minimization
problem:



3904 G. Doǧan et al. / Comput. Methods Appl. Mech. Engrg. 196 (2007) 3898–3914
Xnþ1 ¼ argminX JðXÞ þ 1

2sn
d2ðX;XnÞ

� �
; ð47Þ

where the ‘‘distance term’’ 1
2sn

d2ðX;XnÞ penalizes the dis-
tance between X and Xn. In order to specify the distance
function dð�; �Þ, we consider ~V nþ1 :¼ ~V ð~X nþ1Þ to be the im-

plicit Euler approximation of (19):

~X nþ1 ¼ ~X n þ sn
~V nþ1: ð48Þ

Note that Xnþ1 is described by the set of points ~X nþ1 and
that ~V nþ1 is defined in Xnþ1, so (48) does not specify ~V nþ1

directly.
Let V nþ1 2 BðCnþ1Þ, where ðBðCnþ1Þ; bnþ1ð�; �Þ; k � kCnþ1

Þ is
a Hilbert space defined on the deformable part Cnþ1 of
the boundary of Xnþ1, thereby measuring the (boundary)
smoothness of the vector fields. The natural choice

dðXnþ1;XnÞ ¼ ksnV nþ1kBðCnþ1Þ

converts (47) into the following minimization problem:

~V nþ1 ¼ argmin~V JðXn þ sn
~V Þ þ 1

2sn
ksnV k2

BðCnþ1Þ

� �
; ð49Þ

where ~V ¼ V~mnþ1. The optimality condition reads as
follows:

dJðXnþ1; sn
~W Þ þ 1

sn
bnþ1ðsnV nþ1; snW Þ ¼ 0; 8W 2 BðCnþ1Þ;

ð50Þ
in terms of the variation ~W ¼ W~mnþ1 of ~V nþ1. Such a condi-
tion, via Lemma 2.4, is equivalent to

hGnþ1; snW iCnþ1
¼ � 1

sn
bnþ1ðsnV nþ1; snW Þ; 8W 2 BðCnþ1Þ:

This yields the following ideal equation for V nþ1

bnþ1ðV nþ1;W Þ ¼ �hGnþ1;W iCnþ1
; 8W 2 BðCnþ1Þ; ð51Þ

which is implicit in that the domain Xnþ1 is unknown and
thus part of the problem (see also [7]). A crucial conse-
quence of (49) important for theory is

JðXnþ1Þ 6 JðXn þ sn
~V nþ1Þ þ

sn

2
kV nþ1k2

BðCnþ1Þ 6 JðXnÞ ð52Þ

as results from taking ~V nþ1 ¼ 0 in (49). Consequently,

JðXkÞ þ
1

2

Xk

i¼1

sik~V ik2
BðCiÞ 6 JðX0Þ; 8k P 1:

Solving the implicit nonlinear problem (51) is unaffordable
directly and would require iteration. The following lineari-
zation technique may either replace the implicit solve or be
used as one step in an iterative process.

3.2. Explicit linearization

The key idea is to replace in (51) the new domain Xnþ1

and its deformable boundary Cnþ1, which are unknown,
by the current ones Xn and Cn. This gives rise to the follow-
ing linear elliptic PDE on Cn: find V nþ1 2 BðCnÞ such that
bnðV nþ1;W Þ ¼ �hGn;W iCn
; 8W 2 BðCnÞ: ð53Þ

Then Xnþ1 results from the explicit update ~X nþ1 ¼ ~X nþ
s~V nþ1, but the energy decrease property (52) is no longer
valid. Nevertheless, (53) still provides a weaker energy de-
crease property. In fact, if one chooses ~V nþ1 ¼ V nþ1~mn, with
V nþ1 being the solution of

bnðV nþ1;W Þ ¼ �hGn;W iCn
; 8W 2 BðCnÞ; ð54Þ

then there holds that

dJðXn;~V nþ1Þ ¼ hGn; V nþ1iCn
¼ �bnðV nþ1; V nþ1Þ

6 �kV nþ1k2
BðCnÞ; ð55Þ

that is ~V nþ1 provides a descent direction for the energy
JðXnÞ (see [10]). However, (52) may not be valid, thereby
leading to the bisection of sn (backtracking) until (52)
holds. This is guaranteed by (55) which expresses the
instantaneous decrease of energy.

3.3. Semi-implicit time discretization

To derive an effective algorithm, we still need to address
two critical issues:

Computing geometric quantities such as curvature and normal

velocity implicitly; but most of the geometry explicitly; thereby

reaching a compromise between the schemes of Sections 3:1 and 3:2;

ð56Þ
Providing a variational method to compute curvature that could

be used in unstructured meshes: ð57Þ

To deal with (56) we let Bn denote the linear operator
defined by the scalar product bnð�; �Þ on Cn, namely,

hBnV ;W i ¼ bnðV ;W Þ 8V ;W 2 BðCnÞ:

Recalling the special form (13) of G, we thus propose the
following semi-implicit computation of V nþ1 and jnþ1:

BnV nþ1 þ gðXnÞjnþ1 ¼ �f ðXnÞ: ð58Þ

This relation satisfies neither (52) nor (55) but tends to (15)
for sn ! 0. So backtracking must be employed to guaran-
tee energy decrease.

To assess (57) we resort to basic differential geometry
which asserts that the Laplace–Beltrami operator DC of
the position vector ~X of C is the vector mean curvature ~j
of C, namely,

�DC
~X ¼~j ¼ j~m: ð59Þ

Hereafter we use the minus sign to be consistent with the
convention that a circle with outward unit normal ~m has
positive curvature. The use of (59) for computation is
due to Dziuk [13]. Since we need the scalar curvature j, in-
stead of~j, we proceed as Bänsch et al. [6] and consider the
four unknowns ~j; j; V ; ~V along with their algebraic
relations:

j ¼~j �~m; ~V ¼ V~m: ð60Þ
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If we take C ¼ Cnþ1, then for consistency with (58) we en-
force (59) and (60) semi-implicitly

�DCn
~X nþ1 ¼~jnþ1; jnþ1 ¼~jnþ1 �~mn; ~V nþ1 ¼ V nþ1~mn:

Finally, to close the system we must relate position ~X nþ1 of
Cnþ1 and velocity ~V nþ1. We impose

~X nþ1 ¼ ~X n þ sn
~V nþ1; ð61Þ

whence we get the semi-implicit scheme: find ð~jnþ1; jnþ1;
V nþ1; ~V nþ1Þ, the solution on Cn of the following system of
linear PDE:

~jnþ1 þ snDCn
~V nþ1 ¼ �DCn

~X n; ð62Þ
jnþ1 �~jnþ1 �~mn ¼ 0; ð63Þ
BnV nþ1 þ gðXnÞjnþ1 ¼ �f ðXnÞ; ð64Þ
~V nþ1 � V nþ1~mn ¼ 0: ð65Þ
3.4. Choosing the scalar product

Depending on the application of interest (e.g. image seg-
mentation, optimal shape design for PDE or surface diffu-
sion), there are several possibilities for the space BðCÞ and
the associated scalar product bð�; �Þ.

A first possibility is to choose bð�; �Þ to coincide with the
L2ðCÞ scalar product. Then (64) takes the form

V nþ1 þ gðXnÞjnþ1 ¼ �f ðXnÞ; ð66Þ

which is a backward–forward parabolic-type equation,
depending on the sign of the function g. In fact, (66) is lo-
cally backward (ill-posed) in regions where g < 0 and for-
ward otherwise. This issue is crucial in optimal shape
design for PDE, where the sign of g ¼ p þ c is unknown
beforehand (see Section 4).

A second possibility is to choose bð�; �Þ to coincide with a
weighted H 1ðCÞ scalar product. In this case (64) reads

�divCnðarCn V nþ1Þ þ bV nþ1 þ gðXnÞjnþ1 ¼ �f ðXnÞ; ð67Þ

where b and a are some positive functions. In Section 4 we
will see that this choice (for suitable b’s and a’s) is well sui-
ted to stabilize the (ill-posed) L2 gradient flow in the case of
optimal shape design for PDE and it is helpful in increasing
the rate of convergence of the numerical scheme in the case
of image segmentation.

A third option is to choose bð�; �Þ to coincide with the
H�1ðCÞ scalar product. If gðXnÞ ¼ c and f ðXnÞ ¼ jyðXnÞj2,
then (64) becomes

V nþ1 � cDCnjnþ1 ¼ DCn f ðXnÞ: ð68Þ

This is the case of epitaxially stressed solids. Their dynam-
ics is either described by the physical law (9) or by the H�1

gradient flow of the energy functional (11). In this applica-
tion the choice of scalar product is thus dictated by consis-
tency with the physics of the underlying phenomena.

To derive a weak formulation, we proceed as in the case
of H�1ðCÞ; see [6] for details. For the weighted H 1ðCÞ scalar
product, we multiply by suitable test functions, integrate by
parts �divCnðarCn V nþ1Þ, and ignore boundary terms either
because Cn is closed or we assume Dirichlet boundary con-
ditions: �hdivCnðarCn V nþ1Þ;W i ¼ harCn V nþ1;rCn W i. In
the following we describe the finite element formulation
for the weighted H 1ðCÞ case.

3.5. Finite element discretization

We now discuss the finite element discretization of (62)–
(65). Let T ¼Tn be a shape regular but possibly graded
mesh of triangular finite elements over the surface
C ¼ Cn, which, from now on, is assumed to be polyhedral.
We assume that Cn is defined to be a list of triangles (or seg-
ments), that is information on coordinates and connectiv-
ity. We stress that this is the minimal amount of info
needed for planar domains. No explicit parametrization
such as local or global charts are needed. To simplify the
notations we hereafter drop the subscripts n and n + 1.
Let T 2T be a typical triangle and let ~mT ¼ ðmi

T Þ
d
i¼1 be

the unit normal to T pointing outwards. We denote by ~m
the outward unit normal to C, which satisfies ~mjT ¼~mT for
all T 2T, and is thus discontinuous across inter-element
boundaries. Let f/ig

I
i¼1 be the set of canonical basis func-

tions of the finite element space VðCÞ of continuous piece-
wise polynomials P k of degree 6 k over T for k P 1; we
also set ~VðCÞ :¼VðCÞd . We thus have a conforming
approximation VðCÞ of H 1ðCÞ.

We now multiply Eqs. (62)–(65) by test functions
/ 2VðCÞ and ~/ 2 ~VðCÞ and integrate by parts those
terms involving DC. We thus arrive at the fully discrete
problem: seek ~V ;~j 2 ~VðCÞ, V ; j 2VðCÞ, such that

h~j;~/i � shrC
~V ;rC

~/i ¼ hrC
~X ;rC

~/i; 8~/ 2 ~VðCÞ;
ð69Þ

hj;/i � h~j �~m;/i ¼ 0; 8/ 2VðCÞ; ð70Þ
harCV ;rC/i þ hbV ;/i þ hgj;/i ¼ �hf ;/i; 8/ 2VðCÞ;

ð71Þ
h~V ;~/i � hV ; ~/ �~mi ¼ 0; 8~/ 2 ~VðCÞ: ð72Þ
3.6. Matrix formulation

We turn our attention to an equivalent matrix formula-
tion to the fully discrete problem. Given the matrix entries

Mgi;j :¼ hg/i;/ji; Mbi;j :¼ hb/i;/ji; Mi;j :¼ h/i;/ji;
~Mi;j :¼Mi;j

~Id; ~Ni;j :¼ ðNk
i;jÞ

d
k¼1 :¼ h/i;/jm

kidk¼1;

Ai;j :¼ hrC/i;rC/ji; Aai;j :¼ harC/i;rC/ji; ~Ai;j :¼ Ai;j
~Id;

with ~Id 2 Rd	d being the identity matrix and ð~ekÞdk¼1 the
canonical basis of Rd , the mass and stiffness matrices are

Mg :¼ ðMgi;jÞ
I
i;j¼1; Mb :¼ ðMbi;jÞ

I
i;j¼1; M :¼ ðMi;jÞIi;j¼1;

~M :¼ ð~Mi;jÞIi;j¼1;
~N :¼ ð~N i;jÞIi;j¼1; Aa :¼ ðAai;jÞIi;j¼1;

A :¼ ðAi;jÞIi;j¼1;
~A :¼ ð~Ai;jÞIi;j¼1:
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We point out that ~M ;~A and ~N possess matrix-valued entries
and therefore the matrix–vector product is understood in
the following sense:

~M~V ¼
XI

j¼1

~Mi;j
~V j

 !I

i¼1

; ð73Þ

each component ~V i of ~V, as well as each of ~M~V, is itself a
vector in Rd .

We use the convention that a vector of nodal values
of a finite element function is written in bold face:
V ¼ ðV iÞIi¼1 2 RI is equivalent to V ¼

PI
i¼1V i/i 2VðCÞ.

We are now in a position to write the matrix formulation
of (62)–(65). Upon expanding the unknown scalar func-
tions V ;K 2VðCÞ and vector functions ~V ; ~K 2 ~V in terms
of the basis functions and setting / ¼ /i and ~/k ¼ /~ek,
we easily arrive at the linear system of equations

�s~A~Vþ ~M~K ¼ ~A~X;
MK� ~NT~K ¼ 0;

ðAa þMbÞVþMgK ¼ �f;

~M~V� ~NV ¼~0:

ð74Þ
3.7. Schur complement approach

In this section, following [6], we substitute variables
until we arrive at a system of equations for the scalar veloc-
ity vector V. The resulting system is what is actually solved
in the simulations using an iterative algorithm, such as
GMRES.

Let us rewrite the system (74) in the following way:

~M 0 0 �~N
0 M �~NT 0

�s~A 0 ~M 0

0 Mg 0 Aa þMb

0
BBB@

1
CCCA

~V

K

~K

V

0
BBB@

1
CCCA ¼

0

0
~A~X

�f

0
BBB@

1
CCCA; ð75Þ

or equivalently, with obvious notation and X1 ¼ ð~V;KÞT;
X2 ¼ ð~K;VÞT,

Z N

C ~A

� �
X1

X2

� �
¼

0

h

� �
: ð76Þ

Invoking the equalities

X1 ¼ �Z�1NX2; ð77Þ
ð�CZ�1N þ ~AÞX2 ¼ h; ð78Þ

we see that (78) is equivalent to

~M �s~A~M�1~N

MgM�1~N T Aa þMb

 !
~K

V

 !
¼

~A~X

�f

 !
: ð79Þ

Finally the Schur complement reads as follows:

ðsMgM�1~NT~M�1~A~M�1~N þ Aa þMbÞV

¼ �f �MgM�1~N T~M�1~A~X: ð80Þ
Invertibility of the Schur complement matrix is equivalent
to solvability of (74). This is guaranteed for s small. It is
worth mentioning that the Schur complement matrix is
never directly assembled. We assemble the individual
sparse matrices Mg, M, ~N , ~M , ~A, Aa, Mb; and write a
matrix–vector product routine, which is then passed to
GMRES as an argument. To solve the linear system
Ax ¼ b iteratively, GMRES only requires the routine
n! An. Inside the matrix–vector product routine, we never
invert M or ~M , but solve linear systems using conjugate
gradient (CG) because M and ~M are symmetric and posi-
tive definite.

4. Numerical experiments

The numerical experiments presented here were imple-
mented and carried out within the finite element toolbox
ALBERTA of Schmidt and Siebert [22]. Curve or surface
evolution of the deformable part C of the domain X is what
drives the algorithm. To solve the linear system (74) and
compute the vector velocity ~V, in order to update the mesh,
we first solve for the scalar velocity V the system (80) by the
iterative method GMRES, and finally compute ~V from the
last equation of (74). To solve the elliptic PDE in X, as in
Sections 4.3 and 4.4.2, we invoked the 2D mesh generator
TRIANGLE of Shewchuk [23], which partitions X into
shape regular triangles and exhibits a superior performance
with respect to mesh deformation techniques in 2D. The
situation in 3D is quite different and needs to be explored
further. Finally, we used GEOMVIEW [14] for
visualization.

4.1. Implementation

It is typical of surface evolution undergoing large defor-
mations that triangles may tangle and cross, and that their
angles may become large. These mesh distortions limit res-
olution and approximability, as well as impair computa-
tions, thereby leading to numerical artifacts. We have
resorted to a number of geometric enhancements as pro-
posed by Bänsch et al. for surface diffusion [6]. An addi-
tional feature for curves in 2D is the capability of
handling topological changes. We list these features below
and briefly comment on them.

• Mesh regularization: This is a procedure to maintain
mesh quality, namely to keep all angles on element stars
approximately of the same size. Mesh regularization is a
redistribution of nodes on the surface, which entails a
tangential flow and does not affect the normal motion.
We use the volume preserving Gauss–Seidel type itera-
tion of [6].

• Time adaptivity: This is a procedure to allow large time
steps when the normal velocity does not exhibit large
variations, and to force small time steps when the
change of position of nodes of an element may exceed
the element size. This accounts for very disparate time
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scales and prevent mesh distortion and even node cross-
ing. Following [6], we impose a geometric restriction
that limits the tangential motion of nodes: if z0; z1 are
nodes belonging to a triangle T on Cn, and~sT is any unit
tangent vector to T, then

s ~V nþ1ðz0Þ � ~V nþ1ðz1Þ
� �

�~sT

�� �� 6 CshT rC
~V nþ1jT

�� �� 6 �shT ;

with C; � > 0 mesh independent constants.
• Backtracking: This simple procedure ensures energy

decrease and improves significantly the algorithm
performance. After the time step has been accepted
according to the previous criterion we check that
JðXnþ1Þ < JðXnÞ. If this is not the case, we divide the
time step by two and re-compute, repeating if necessary
until the functional value is smaller than the previous
one. The algorithm stops when the time step necessary
for functional decrease is smaller than a pre-assigned
minimum time step. There is still some room for
improvement of this algorithm, but this is beyond the
scope of this article.

• Space adaptivity: This procedure keeps, via refining/
coarsening, an accurate representation of Cn with least
computational cost in the sense that the node density
correlates with the local variation (regularity) of Cn.
We measure the latter intrinsically by monitoring the
variation of normals ~m. Since the pointwise accuracy of
a mesh in representing a smooth surface is proportional
to h2

SjrC~mj, we impose [6]

h2
S jrC~mj � h2

S

j~m1 �~m2j
hS

� bShS 
 �;

here T 1; T 2 are two adjacent elements in Cn with unit
normals ~m1;~m2 and common side (node in 2D) S, bS is
the angle between~m1;~m2, and � > 0 is a given constant.

• Angle width control: This procedure consists of a single
splitting (one bisection) of those elements with angles
wider than a certain threshold bmax, followed by a few
mesh regularization sweeps [6]. This procedure is impor-
tant close to pinch-off where mesh distorsion increases
dramatically (see Fig. 10).

• Topological changes in 2D: This procedure is a set of algo-
rithms that carry out topological changes, such as merg-
ing and splitting, in 2D; see [12] for details. At each time
step, we check for element intersections that signal topo-
logical changes. If there are intersections, we adjust the
time step and local resolution, reconnect elements at the
intersection locations and delete superfluous elements if
necessary. Level set methods can handle topological
changes also in 3D and could be combined with our var-
iational approach. This coupling is being investigated.
4.2. Image segmentation

In this section we perform numerical experiments with a
number of synthetic images, by minimizing the geodesic
active contour functional
JðXÞ :¼
Z

C
HðxÞdS þ k

Z
X

HðxÞdx:

The process starts with an initial curve in 2D or surface in
3D, which is iteratively deformed to decrease its energy at
each step, and should terminate at the boundaries of the
objects in the image.

4.2.1. Two gradient flows: L2 vs weighted H1

In our first experiment, we have a simple image with one
connected, but nonconvex, object in it and we want to com-
pare the L2 gradient flow with the one resulting from the
following weighted H1 scalar product:

bðV ;W Þ ¼
Z

C
arCVrCW þ bVW ; ð81Þ

where

a ¼ H ; b ¼ m � D2H � mþ ð2jþ kÞomH þ kjH
� �

þ

and ð�Þþ ¼ maxð�; �Þ; � > 0. This scalar product has been
obtained in [17] by taking the second order shape derivative
into account, thereby resulting in a Newton-type flow.

Both the L2 and weighted H1 Newton-type flows suc-
cessfully detect the object, but the latter exhibits a smaller
number of iterations and thus a higher rate of conver-
gence (see Fig. 1). In this case the choice of the ‘‘good’’
scalar product has been essentially dictated by issues con-
cerning stability and rate of convergence of the descent
method.

In the rest of this Section 4.2 we present numerical
experiments computed with the weighted H1 scalar product
(81). We should remark that the choice of threshold � is a
subtle issue. Hintermüller and Ring report in [17] that a
small value suffices in general. Our experiments also show
that � = 0.1 is well-behaved for a 100 · 100 image if we take
unit interpixel distance, thereby giving rise to a computa-
tional domain [0, 100]2. However, we prefer to take
~x ¼ 0:01x and rescale the domain to [0,1]2. This change
of variables scales a by a factor 104 through D2H , oH m

and j. To preserve the time scale, � must also be replaced
with ~� ¼ ð0:01Þ�2

� ¼ 103. This is the threshold used in
our simulations.

4.2.2. Multiple objects

In this case the image has multiple objects in it. We start
with a single closed curve that evolves and breaks into four
smaller curves, which in turn eventually converge to the
boundaries of the objects (see Fig. 2). The topological
changes have been handled by using numerical tools devel-
oped in [12].

4.2.3. A simple 3D image

We finally consider a 3D image consisting of two
spheres touching each other. The initial surface is a sphere
that changes curvature as it evolves. This is reflected in the
mesh grading (see Fig. 3).



Fig. 1. Detection of a simple nonconvex object via the L2 gradient descent (top) and weighted H1 gradient descent (bottom) with k = 30. The weighted H1

flow is faster and more accurate than the L2 gradient flow, as reflected in the number of iterations k, functional value J and resolution of reentrant corners.

Fig. 2. Detection of multiple objects with weighted H1 flow (k = 40), showing splitting into several curves which recover all objects in the image.
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4.3. Optimal shape design for PDE

In this section we present some numerical experiments
for the model problem of Sections 1.2 and 2.2.2. Here,
the energy functional reads

JðX; yðXÞÞ :¼ 1

2

Z
D

yðXÞ � zg

� �2
dx;

where zg is a given target function on a subdomain D of X.
The goal is to have the solution yðXÞ of (7) closest to zg in-
side D in the least squares sense. We assume that both X
and D are polygonal domains, and force the mesh genera-
tor TRIANGLE to match the boundary of D exactly when
solving elliptic problems in X. This minimizes the quadra-
ture error for the right-hand side evaluation in the equa-
tions for both y ¼ yðXÞ and p ¼ pðXÞ.
4.3.1. The choice of scalar product

We perform simulations with a bilinear form bð�; �Þ cor-
responding to a weighted H1 scalar product, which gives
rise to the elliptic PDE (67) on Cn:

�divCðarCV nþ1Þ þ bV nþ1 þ gðXnÞjnþ1 ¼ �f ðXnÞ; ð82Þ

where g ¼ p, f ¼ �rCyrCp, and the weight functions b
and a were chosen appropriately.

The first attempt simply employs the L2ðCÞ scalar prod-
uct, which is obtained by taking a = 0 and b = 1. In this
case (82) reduces to

V nþ1 þ pjnþ1 ¼ rCyrCp; ð83Þ

which is a backward–forward parabolic-type equation,
depending on the sign of the adjoint solution p. More pre-
cisely, (83) is locally backward parabolic (and so ill-posed)



k = 10 k = 30 k = 40
J = 2.667 J = 1.463 J = 0.966

k = 50 k = 60 k = 110
J = 0.536 J = 0.230 J = 0.036

Fig. 3. Detection of a 3D object consisting of two touching balls with weighted H1 flow (k = 0). Notice the mesh grading depending on surface curvature.
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in regions where p < 0 and forward otherwise. The ill-
posedness of (83) gives rise to strong oscillations on the
evolving curve at the mesh level, which can be observed
in Fig. 4 where p < 0 (lower left). This ruled out the sim-
ple-minded option of L2 flow because it is unstable.

The key idea behind the choice of an adequate scalar
product is to set b ¼ 1 on the whole curve C and take a var-
iable to smooth out the evolution and thereby prevent
oscillations. We thus take a ¼ 1 where p < 0 and a small
where p < 0. In order to avoid spurious singularities in
the velocity we make a vary smoothly from one element
to a neighbor. This is reflected in the definition of a, which
is constant on each edge e of C, but such constant depends
on pM :¼ maxep and pm :¼ minep as follows: we define the
average �p ¼ 1

2
ðpM þ pmÞ and the oscillation osc ¼ pM � pm

of p over e, and let aje be
Fig. 4. L2 gradient flow from a noncentered ellipse to a centered circle. The ex
configuration is a small ellipse centered at (0.5,0.7); see Fig. 5. The L2 scalar pro
locally unstable where p < 0 (lower left). The bottom row is a zoom of the un
aje ¼
1; if pm < 0;

1� �pð1�h2
e Þ

osc
; if pm P 0 and �p 6 osc;

h2
e ; if pm P 0 and �p > osc;

8><
>: ð84Þ

where he denotes the length of e. That is, in the transition
region where p changes sign, aje is a sort of linear interpo-
lation between +1 and h2

e . The effective behavior of factor
h2

e is to mimic an L2 scalar product. Therefore, the resulting
mesh dependent scalar product bð�; �Þ combines L2 and H1

scalar products smoothly.
4.3.2. Test 1: exact solution
In this section we present an example with a known

optimal shape. To build this example, we let zg ¼ log 3
jxj2

be the exact solution of Laplace’s equation on the ring
act solution is a circle of radius one centered at the origin, and the initial
duct yields a dynamics which is locally stable where p > 0 (upper right) and
stable region exhibiting oscillations at the mesh level.
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f1 < jxj2 < 3g with homogeneous Dirichlet data on
fjxj2 ¼ 3g, and outer normal derivative equal to 1 on
fjxj2 ¼ 1g. We let D ¼ f2 6 jxj2 6 2:5g, and we point out
that the global minimizer of JðX; yðXÞÞ is X� :¼ f1 <
jxj2 < 3g. The weighted H1-scalar product with a as in
(84) turns out to be a reasonable compromise between
numerical stability and rate of convergence. We present
a sequence of stable computations in Fig. 5 starting from
a noncentered ellipse.

We also study the evolution from different initial config-
urations and observe that the algorithm always reaches a
local minimum, but not necessarily the global minimizer
X*. In Fig. 6 we show the evolution obtained from an initial
configuration consisting of two disjoint squares. This evo-
lution leads to merging and stops at a local minimum dif-
ferent from the optimal configuration X*. Nevertheless,
the functional decreases several orders of magnitude which
illustrates the flat energy landscape of JðX; yðXÞÞ.

An observation common to all simulations is that the
reduction of JðX; yðXÞÞ, as well as the change of shape of
C, is fast at the beginning but somewhat slow close to the
optimal shape. This is typical of gradient flows.

4.3.3. Test 2: unknown solutions

We present here two examples with unknown minimizer.
The first example consists of the same initial configuration
and the same ring D as in the examples of Section 4.3.2, but
the objective function zg is now given in polar coordinates
by

zgðr; hÞ ¼ 0:45þ 0:4 cosð6hÞ:

That is, zg is oscillates with respect to the angle h. This
experiment is to check whether the H1 gradient flow is able
to capture geometries other than circles.

In Fig. 7 we present snapshots of the approximating
domains Xk together with values of the functional Jk. It
Fig. 5. Weighted H1 flow from a noncentered ellipse to a centered circ
is interesting to notice that the functional value does not
decrease as drastically as in the previous examples. How-
ever, it is worth mentioning that the flow is able to capture
the direction of energy decrease, even when such quantity is
very small in relative terms. For example, between the fifth
and sixth pictures, the energy decrease is just 0.03%, but the
method is still able to detect how the curve should be mod-
ified to get an energy reduction.

Next, we consider a problem which resembles a real
application. We take the starting domain to be

X ¼ x 2 R2 : jxj1 < 3; and jxj2 > 0:5
	 


;

and consider homogeneous Dirichlet boundary condition
on the outer boundary, which is kept fixed, and the outer
normal derivative equal to +1 in the ‘‘inner boundary’’.
The objective function is now zg � 0:45 in the domain
D :¼ fx 2 R2 : 2:0 < jxj1 < 2:5g. Ideally the solution y

should equal 0.45 in the (square) ring D, but this cannot
happen with a harmonic function. We present a sequence
of computations in Fig. 8 starting from a small centered
circle (of radius 0.5). This circle evolves first into a bigger
circle, and later into a smoothed-out square, yielding an en-
ergy reduction that goes from an initial value of 0.97481 to
a final value of 0.19826. There is again a quick energy
reduction at the beginning and a slower reduction in the
end, which is typical of gradient flows.
4.4. Surface diffusion and epitaxially stressed solids

We present a couple of simulations exhibiting pinch-off
in finite time, for the model problem of Sections 1.3 and
2.2.3:

JðX; yðXÞÞ ¼
Z

X
jryðXÞj2 þ

Z
C

dS:
le. This dynamics is stable and efficient to detect a local minimizer.



Fig. 6. Evolution of two disjoint squares merging via H1 flow. The evolution stops at a local minimum before reaching the optimal circular configuration.

Fig. 7. Evolution of a small circle towards an unknown smoothed-out triangle via H1 flow. The goal is to have the solution y as close as possible to an
oscillating function zg in the ring D ¼ fx 2 R2 : 2:0 < jxj2 < 2:5g.
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We first consider in Section 4.4.1 the pure geometric mo-
tion by surface diffusion, namely yðXÞ ¼ 0, and next the
coupled problem in Section 4.4.2:

V ¼ DCðjþ jrCyðXÞj2Þ:

We illustrate the use of space–time adaptivity as well as
mesh smoothing and angle width control, explained in Sec-
tion 4.1, to maintain mesh quality.
4.4.1. Test 1: surface diffusion with pinch-off

Let the initial surface Cð0Þ be an 8 · 1 · 1 prism. This
surface evolution is geometric and, even though it is regu-
larizing, it leads to pinch-off in finite time as depicted in
Fig. 9. This is a key example for the use of mesh smoothing
and space–time adaptivity to avoid mesh distortion. How-
ever, close to the pinch-off some elements would tend to
degenerate if it were not for the angle width control. Their
combined effect is displayed in Fig. 10.

4.4.2. Test 2: formation of an inclusion

We now couple surface diffusion of the free surface of a
film with the Laplace equation in the bulk, as explained in
Section 1.3 and 2.2.3. We imposed the Dirichlet boundary
condition y ¼ x on both the bottom and lateral boundary.
The initial free surface Cð0Þ is a small cosine perturbation
of the flat case, and its evolution CðtÞ is periodic in x.
We observe that CðtÞ retains the graph property for a while



Fig. 10. Detailed view of the pinch-off for the 8 · 1 · 1 prism of Fig. 9. The control of wide angles, coupled with mesh regularization, refinement and
coarsening cure mesh distortion until the very moment of pinch-off, when the elements are rather elongated but not degenerate. An angle is considered to
be wide when bigger than 120� (taken from [6]).

Fig. 8. Evolution of a small circle towards an unknown smoothed-out square via H1 flow. The goal is to have the solution y as close to 0.45 as possible in
the region D ¼ fx 2 R2 : 2:0 < jxj1 < 2:5g.

Fig. 9. Surface diffusion with pinch-off in finite time. Evolution of an 8 · 1 · 1 prism at various time instants leading to a dumbbell and cusp formation
(between parentheses we indicate the number of vertices used to represent the surface). The evolution was computed using time step control, mesh
regularization, mesh refinement/coarsening, and a routine for controlling angle width (taken from [6]).
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Fig. 11. Coupling surface diffusion with the Laplace operator in the bulk leads to a mushroom-like free surface that gives rise to an inclusion in finite time.
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and eventually develops into a mushroom-like shape which
closes up forming an insertion; see Fig. 11.
5. Conclusions

We presented a novel variational framework for
numerically solving shape optimization problems. This
framework is based on shape differential calculus, a semi-
implicit time discretization and a finite element method
for space discretization. Three examples were put into this
framework: Image segmentation, optimal shape design for
PDE, and surface diffusion. Some essential features of our
approach are the following:

• Flexibility in choosing different descent directions by
varying the scalar product used for the computation of
normal velocity. We exploit this in applications either
to provide efficiency (image segmentation, Section 4.2),
stability (optimal shape design for PDE, Section 4.3),
or to obtain an evolution consistent with physics (sur-
face diffusion, Section 4.4).

• No need of an explicit parametrization of the deform-
able surface or curve. A description through vertex coor-
dinates and element connectivity is sufficient.

• Well fitted for time and space adaptivity, mesh smooth-
ing and backtracking, which are explored in the paper
(see Section 4.1 and the simulations thereafter).

• Implicit (and therefore stable) computation of the curva-
ture and normal velocity of the discrete surfaces without
a CFL constraint. On the other hand level set-based
approaches in shape optimization often handle these
quantities explicitly in the time stepping scheme, hence
in a less stable manner [7,17].

• Explicit handling of geometry (surface and normals),
which give rise to a system of linear elliptic PDE on sur-
faces at every time step. A Schur complement approach
is employed to solve the linear algebraic system for the
scalar normal velocity at each time step.

• Capability to handle topological changes in 2D (see
Sections 4.2 and 4.3). A hybrid variational/level set
approach for 3D is being investigated.

Even though the presentation is formal, this work con-
stitutes a concrete basis for the development and imple-
mentation of efficient numerical algorithms for general
shape optimization problems. Further research includes
dealing with PDE and topological changes in 3D.
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