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Abstract. We consider finite elements that are adapted to a (semi)norm that
is weaker than the one of the trial space. We establish convergence of the finite
element solutions to the exact one under the following conditions: refinement
relies on unique quasi-regular element subdivisions and generates locally quasi-
uniform grids; the finite element spaces are conforming, nested, and satisfy
the inf-sup condition; the error estimator is reliable and appropriately locally
efficient; the indicator of a non-marked element is bounded by the estimator
contribution associated with the marked elements, and each marked element
is subdivided at least once. This abstract convergence result is illustrated by
two examples.

1. Introduction and Outline

Adaptivity has become a popular technique to increase the efficiency of finite
element methods for boundary values problems. In practice, finite element grids
are adapted to various error notions: the energy norm, other norms, or the output of
certain functionals applied to the solution. However, the theoretical underpinning
of the methods in terms of convergence and complexity results essentially restrict,
up to now, to the most immediate cases of the energy norm and the norm of the
trial space; see, e.g., [2, 6, 9, 10, 5, 8, 14].

This paper presents a basic convergence result for finite elements that are adapted
to a (semi)norm that is possibly weaker than the one of the trial space. To this end,
§2 gives general assumptions on the problem itself, the refinement framework, the
finite element spaces, the approximate solution, the a posteriori error estimator,
the marking strategy, and the step REFINE. They ensure the convergence of both
error in the weaker (semi)norm and associated estimator. The proof is obtained by
generalizing the convergence proof of [11] in a straight-forward manner.

In §3 we illustrate this convergence result by two examples: Lagrange ele-
ments for the Poisson problem that are adapted for the mean square error and
Raviart-Thomas or Brezzi-Douglas-Marini elements in a mixed discretization that
are adapted for the mean square error of the flux.

2. Abstract Convergence for Weak Norms

We first describe the problem class and adaptive algorithm and then present the
convergence result.

2.1. Problem Class and Error Notion. We consider linear boundary value
problems that can be reformulated in the following weak form: given a real Hilbert
space V with norm ‖ · ‖, a continuous bilinear form B : V×V → R, and an element
f ∈ V∗ of the dual space of V, find

(1) u ∈ V : B(u,w) = 〈f, w〉 ∀w ∈ V.
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We suppose that the so-called inf-sup (or Babuška-Brezzi) condition holds: there
exists α > 0 such that

(2a) inf
v∈V

‖v‖=1

sup
w∈V

‖w‖=1

B(v, w) ≥ α, inf
w∈V

‖w‖=1

sup
v∈V

‖v‖=1

B(v, w) ≥ α.

Concerning the error notion, we are interested in a seminorm | · | that is weaker
than ‖ · ‖: there exists C ≥ 0 such that

(2b) ∀ v ∈ V |v| ≤ C‖v‖.

Below, we will introduce ‘local features’ into (1) by making assumptions on a
mesh-dependent counterpart of | · | and its interplay with B. To this end, we
suppose that V is a subspace of Lp(Ω; Rm), where p ∈ (1,∞), m ∈ N, and Ω is the
underlying domain in Rd, d ≥ 2, that can be meshed. In what follows, we suppress
the dependence on the data Ω, f , and B.

2.2. Adaptive Algorithm. The adaptive algorithm for approximating u in (1) is
an iteration of the following main steps:

(3)

(1) uk := SOLVE
(

V(Gk)).

(2) {Ek(E)}E∈Gk
:= ESTIMATE

(

uk,Gk

)

.

(3) Mk := MARK
(

{Ek(E)}E∈Gk
, Gk

)

.

(4) Gk+1 := REFINE
(

Gk, Mk

)

, increment k.

In practice, a stopping test is used after step (2) for terminating the iteration; here
we shall ignore it for notational convenience. The realization of these steps requires
the following objects and modules:

Initial Grid and Framework for Refinement. An initial grid G0 of the domain
Ω and a refinement procedure REFINE. The refinement procedure has two input
arguments: a grid G and a subset M ⊂ G. All elements E ∈ M must be ‘refined’.
The input grid G can be the initial grid G0 or the output of a previous application
of REFINE. A grid G′ is called refinement of G whenever G ′ can be produced from G
by a finite number of applications of REFINE. Initial grid and refinement procedure
thus generate the set

G := {G | G is a refinement of G0}.

We shall write ‘4’ for ‘≤ C’ where C may depend on data of (1), the class G,
and the modules ESTIMATE, MARK below, but not on a particular grid or the
iteration number. Similarly, we say that some object is ‘fixed’ if it has the same
dependencies.

We suppose that REFINE relies on unique quasi-regular element subdivisions.
More precisely, there exist constants q1, q2 ∈ (0, 1) such that, irrespective of the grid
G, any element E ∈ G can be subdivided into n(E) ≥ 2 subelements E ′

1, . . . , E
′
n(E)

such that

E = E′
1 ∪ · · · ∪ E′

n(E), |E| = |E′
1| + · · · + |E′

n(E)|,(4a)

q1|E| ≤ |E′
i| ≤ q2|E|, i = 1, . . . , n(E),(4b)

where |E| stands for the d-dimensional Lebesgue measure of E.
These unique element subdivisions generate a ‘master forest’ F of infinite trees,

where each node corresponds to an element, its direct successors to its subelements,
and the roots to the elements of the initial grid G0. A subforest F̂ ⊂ F is called
finite if it has a finite number of nodes. Any finite tree may have interior nodes, i.e.
nodes with successors, and does have leaf nodes, i.e. nodes without any successor.
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Any subdivision S of the domain Ω that is subordinated to G0 is uniquely asso-
ciated with a finite subforest F(S) of F , where the leaf nodes are the elements of

the subdivision. Given n ∈ N and a subset Ŝ of such subdivision S, we denote by
Fn(S, Ŝ) the subforest of F that consists of F(S) and all successors of elements in

Ŝ up to generation n.
We suppose that the class G is a subclass of the subdivisions of Ω subordinated

to G0 and is locally quasi-uniform in that

(4c) sup
G∈G

max
E∈G

#NG(E) 4 1, sup
G∈G

max
E′∈NG(E)

|E|

|E′|
4 1,

where NG(E) := {E′ ∈ G | E′ ∩E 6= ∅} denotes the set of neighbors of E in G. The
grids in G may have additional properties like conformity.

Finite Element Spaces and Mesh-Dependent Norms. We suppose that the
finite element spaces V(G), G ∈ G, are conforming, nested, and satisfy a discrete
inf-sup condition: for any G,G′ ∈ G, there hold

V(G) ⊂ V(5a)

G′ is a refinement of G =⇒ V(G) ⊂ V(G ′)(5b)

inf
v∈V(G)
‖v‖=1

sup
w∈V(G)
‖w‖=1

B(v, w) ≥ β(5c)

with some fixed β > 0.
Moreover, we suppose that, for each grid G ∈ G, there is a pair | · |G , |||·|||G of

possibly mesh-dependent seminorms that is associated with the weak seminorm | · |
of the error notion and has the following properties:

• | · |G = | · |G;Ω is a seminorm on V that is close to | · |, p-subadditive with respect
to the domain, and absolutely continuous with respect to the Lebesgue measure
in the following sense: for all v ∈ V,

|v| 4 |v|G 4 ‖v‖,(5d)
n
∑

i=1

|v|pG;ωi
4 |v|pG;Ω,(5e)

|v|Gk ;Ωk
→ 0,(5f)

where {ωi}n
i=1 are disjoint subdomains of Ω, each one being a union of elements

of G, and {Ωk}k is a sequence of subdomains such that |Ωk| → 0 and each Ωk is
a union of elements of a grid Gk.

• |||·|||G is a seminorm on a subspace Ṽ(G) of V(G);

• the bilinear form is continuous with respect to the pair | · |G , |||·|||G in a local
sense: there is a constant CB ≥ 0 such that, if ω is a union of elements of G, then
we have for any v ∈ V and any w ∈ Ṽ(G)

(5g) w = 0 in Ω \ ω =⇒ B(v, w) ≤ CB|v|G;ω |||w|||G .

The role of these mesh-dependent seminorms will become clear from the example
in §3.1.

SOLVE. We suppose that the output uG := SOLVE
(

V(G)
)

is the Galerkin approxi-
mation of u in V(G):

(6) uG ∈ V(G) : B(uG, w) = 〈f, w〉 ∀w ∈ V(G).

Thanks to (5a) and (5c), the solution of (6) exists and is unique.
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ESTIMATE. We suppose that {EG(E)}E∈G := ESTIMATE(uG ,G) has the following
two properties for any grid G ∈ G: First, there holds the following global upper
bound for the error in | · | of the Galerkin approximation uG :

(7a) |uG − u| 4 EG ,

where, given a subset Ĝ ⊂ G, we define EG(Ĝ) :=
(
∑

E∈Ĝ Ep
G(E)

)1/p
and set EG :=

EG(G) and EG(∅) := 0.
Secondly, a fixed finite subdivision depth implies a local lower bound with respect

to a mesh-dependent dual seminorm of the residual. More precisely, there is a
fixed n ∈ N such that, for any element E ∈ G and any finer grid G ′ ∈ G with
F(G′) ⊃ Fn

(

G, NG(E)
)

, there holds

(7b) EG(E) 4 sup
{

〈RG , w〉 | w ∈ Ṽ
(

G′;ωG(E)
)

, |||w|||G′ ≤ 1
}

+ oscG(E),

where the oscillation indicator satisfies

(7c) oscG(E) 4 m(|E|)
(

|uG |G;ωG(E) + ‖D‖D(ωG(E))

)

.

Hereafter

• RG ∈ V∗ is the residual defined by

(8) 〈RG , w〉 := B(uG, w) − 〈f, w〉, ∀w ∈ V;

• ωG(E) ⊂ Ω is the patch (union) of elements in NG(E);

• Ṽ
(

G′;ωG(E)
)

is the space of ‘local test functions’ given by

Ṽ
(

G′;ωG(E)
)

:=
{

w ∈ Ṽ(G′) | w = 0 in Ω \ ωG(E)
}

;

• m : [0,∞) → [0,∞) is a fixed, continuous, and nondecreasing function with
m(0) = 0;

• D is another space with a norm that is p-subadditive and absolutely continuous
with respect to the Lebesgue measure in the sense of (5e), (5f), and D ∈ D is
given by the data of (1).

The global upper bound (7a) ensures that the error indicators do not overview
any source of error. Inequality (7b) is the main step in proving a local lower error
bound by Verfürth’s constructive argument [15]: indeed, if one inserts (1) into (8)
and recalls (5g), then (7b) readily yields the local lower error bound

(9) EG(E) 4 |uG − u|G;ωG(E) + oscG(E).

Thus, (7b) ensures, up to (7c) and the difference between | · | and | · |G , the sharpness
of the upper bound (7a) in a local sense. The presence of the oscillation indicator
(7c) is discussed in Remark 4.7 of [11].

MARK. We suppose that the output M := MARK
(

{EG(E)}E∈G ,G
)

of marked
elements has the property

(10) ∀E ∈ G \M EG(E) ≤ EG(M).

We suppose (10) only for convenience; in §5 of [11] we consider a weaker condition
that is sufficient and essentially necessary for convergence.

REFINE. We suppose that the output grid G ′ := REFINE(G,M) satisfies the min-
imal requirement

(11) F(G′) ⊃ F1(G,M),

that is, each marked element of the input grid is subdivided at least once in the
output grid. Additional elements in G \M may be refined in order to fulfill (4c) or
to ensure that the output grid is in the class G.
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2.3. Convergence. We now state the main result of this paper. The difference to
Theorem 2.1 in [11] is that here the grids are adapted to the error in the seminorm
| · |, which is weaker than the one of the trial space.

Theorem 1 (Abstract Convergence for Weak Norms). Let u be the exact solution
of (1), suppose that there holds (2), and that {uk}k is the sequence of approximate
solutions generated by iteration (3).

If the refinement framework, the finite element spaces, the modules SOLVE, ESTI-

MATE, MARK, and REFINE satisfy, respectively, (4), (5), (6), (7), (10), and (11),
then both error and estimator decrease to 0, that is

|uk − u| → 0 and Ek → 0 as k → ∞.

Proof. In view of [11, Lemma 4.2], {uk}k converges to some u∞ ∈ V and it remains
to show that u∞ = u. To this end, proceed as in [11, §4.2] with the following
modifications: use (5g) instead of a ‘local’ continuity of B in terms of ‖ · ‖, sum
p-powers of local (semi)norms instead of squares, and then exploit (5d) or (5f). �

3. Two applications

The following two applications focus on the error notion, which is really weaker
that the norm of the trial space; further examples are in [11, §3]. In what follows,
hG stands for the meshsize function associated with G ∈ G.

3.1. Mean Square Error in Poisson’s Problem. We apply iteration (3) to
generate finite element solutions to the Poisson problem that adaptively approach
the exact solution in the L2-error.

Problem. Let Ω ⊂ Rd, d ∈ {2, 3}, be a bounded, polyhedral, and convex domain,
set

V = H1
0 (Ω), ‖ · ‖ = ‖∇ · ‖L2(Ω), | · | = ‖ · ‖L2(Ω),

B(v, w) =

∫

Ω

∇v · ∇w, v, w ∈ V,

and suppose f ∈ L2(Ω). It is well known that there hold f ∈ V∗ and (2).

Refinement framework. Let G0 be a suitable conforming triangulation of Ω into d-
simplices and let G be the class of all triangulations that can be generated from G0

by iterative or recursive bisection; e.g. see [12]. Then (4) is fulfilled with n(E) = 2,
and q1 = q2 = 1

2 ; the hidden constants in (4c) depend on G0. Moreover, G is a
shape-regular family of triangulations.

Finite element spaces and mesh-dependent norms. For any G ∈ G, we choose
Lagrange elements of any fixed order `,

V(G) := LE`(G) ∩H1
0 (Ω) := {v ∈ H1

0 (Ω) | ∀E ∈ G v|E ∈ P`(E)},

which is contained in V. Since coercivity and continuity are handed down to a
restriction of B and spaces of piecewise polynomials are nested on nested grids,
(5a)-(5c) are valid with β = 1.

Moreover, we define the mesh-dependent norms as follows: given any v ∈ V and
any union ω of elements of G, we set

(12a) |v|G;ω =

(

∑

E⊂ω

‖v‖2
L2(E) + ‖h

1/2
G v‖2

L2(∂E)

)1/2

and, for any w ∈ Ṽ(G) = V(G),

(12b) |||w|||G =

(

∑

E∈G

‖D2w‖2
L2(E) + ‖h

−1/2
G ∂nw‖

2
L2(∂E)

)1/2

.
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Then | · |G;Ω is a norm on V and, in view of the scaled trace theorem ‖ · ‖L2(∂E) 4

‖h
−1/2
G · ‖L2(E) + ‖h

1/2
G ∇ · ‖L2(E) and the Poincaré inequality, (5d), (5e), and (5f)

are valid. Moreover, |||·|||G is a norm on V(G) and (5g) is readily verified after an
element-wise integration by parts.

Approximate solution and estimator. We suppose that SOLVE outputs the Galerkin
approximation given by (6). Given such Galerkin solution uG on a grid G, the output
of ESTIMATE is the standard residual estimator {EG(E)}E∈G for the L2(Ω)-error
given by

E2
G(E) := ‖h

3/2
G [[∂nuG ]] ‖2

L2(∂E\∂Ω) + ‖h2
G(f + ∆uG)‖2

L2(E), E ∈ G,

where [[∂nuG ]] stands for the jump of the normal derivative of uG across interelement
sides. This estimator fulfills (7) with

n =

{

3 if d = 2,

6 if d = 3,
oscG(E) = ‖hG(f − f̄G)‖L2(ωG(E)),

m(s) = s1/d, s ∈ [0,∞), D = L2(Ω), D = f,

where f̄G is the L2-projection of f on the space of possibly discontinuous piecewise
polynomials of degree ≤ `− 1; indeed, for (7a) see [15, Prop. 3.8] and for (7b) see
[10, §6] but use (5g) with the mesh-dependent norms (12).

Marking strategy and refinement rule. Take any marking strategy ensuring that the
biggest indicator is marked and require only that each marked simplex is bisected
at least once. Then (10) and (11) are valid.

Under the above assumptions, Theorem 1 ensures that

‖uk − u‖L2(Ω) → 0 and Ek → 0 as k → ∞.

To our best knowledge, this is the first convergence result for the Poisson problem
where the adaptation is not directed by an energy norm estimator.

3.2. Mean Square Error of the Flux in Mixed Discretizations. For mixed
discretizations of the Poisson problem, we consider iteration (3) with an estimator
for the approximation error in the flux.

Problem. Let Ω be a bounded, connected, polyhedral Lipschitz domain in R2. The
mixed formulation of Poisson’s problem and the error notion are given by

V = V × Q with V = H(div; Ω), Q = L2(Ω)

‖v‖2
V = ‖v‖2

L2(Ω;R2) + ‖ div v‖2
L2(Ω) + ‖q‖2

L2(Ω), |v| = ‖v‖L2(Ω;R2)

B(v, w) =

∫

Ω

v · w −

∫

Ω

q div w +

∫

Ω

div v r,

for v = [v, q], w = [w, r] ∈ V. Suppose f ∈ L2(Ω), which is identified with
(0, f) ∈ V∗. Then (2) is valid; see Example 1.2 in [3, §II.1.2].

Refinement framework, finite element spaces, and seminorms. We use the same
refinement framework as in §3.1 for d = 2 and choose Raviart-Thomas or Brezzi-
Douglas-Marini elements of order ` or ` + 1 for the flux variable and piecewise
polynomials of degree ≤ ` for the scalar variable: given a triangulation G ∈ G, we
set

V(G) = V(G) × Q(G) with V(G) = RT`(G) or BDM`(G),
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where

Q(G) :=
{

q ∈ L2(Ω) | ∀E ∈ G q|E ∈ P`(E)
}

,

RT`(G) :=
{

w ∈ H(div; Ω) | ∀E ∈ G w|E ∈
(

P`(E; R2) + x P`(E)
)}

,

BDM`(G) :=
{

w ∈ H(div; Ω) | ∀E ∈ G w|E ∈ P`+1(E; R2)
}

.

In both cases, the inclusion div V(G) ⊂ Q(G) and (5a)-(5c) hold; see Prop. 1.1 in
[3, §IV.1.2].

Moreover, we let | · |G = | · |, which does not depend on G. Then (5d)-(5f) are
valid; the seminorm |||·|||G will be chosen below.

Approximate solution and estimator. Let SOLVE output the Galerkin solution of
(6) and, writing uG = [uG , pG ], we suppose that ESTIMATE outputs {EG(E)}E∈G

given by

E2
G(E) = ‖hG rotuG‖

2
L2(E) + ‖h

1/2
G [[uG · t]] ‖2

L2(∂E∩Ω) + ‖hG(f̄G − f)‖2
L2(E),

where rotv = ∂x2v1 − ∂x1v2, f̄G stands for the L2(Ω)-orthogonal projection of f
onto Q(G), and on any inter-element side, t stands for a fixed unit tangent vector.
We shall prove that this estimator satisfies (7) with

n = 4, m(s) = s1/d, s ∈ [0,∞), oscG(E) = ‖hG(f̄G − f)‖L2(ωG(E)),

D = L2(Ω), and D = f.

Before embarking on the proper proof of the a posteriori bounds, we recall the
orthogonal Helmholtz-decomposition [7, Theorem III.3.2]:

(13) L2(Ω; R2) = ∇H1(Ω)/R ⊕ curlH1
∂Ω(Ω),

where H1
∂Ω(Ω) denotes the space of all H1(Ω)-functions that are constant on each

connected component of ∂Ω and curlφ =
[

−∂x2φ, ∂x1φ
]

T , which has rot as adjoint

operator. Note that φ ∈ H1
∂Ω(Ω) implies curlφ · n = 0 on ∂Ω. The decomposition

(13) appears in the relationship of error uG −u and residual R: If w = [0,−ψ] ∈ V

with ψ ∈ ∇H1(Ω)/R normalized such that
∫

∂Ω
(uG − u) · nψ = 0, then

(14)

∫

Ω

(uG − u) · ∇ψ = B(uG − u,w) = 〈RG , w〉 =

∫

Ω

(f̄G − f)ψ

thanks to integration by parts, (1), and (6). Moreover, if w = [curlφ, 0] ∈ V with
φ ∈ H1

∂Ω(Ω), then

(15)

∫

Ω

(uG − u) · (curl φ) = B(uG − u,w) = 〈RG , w〉 =

∫

Ω

uG · curlφ

because curlφ is divergence-free and again thanks to (1).

The proof of the upper bound (7a) can be established by exploiting both the
relationship (14) for the gradient part and (15) for the curl-part of the error;
proceed similarly to the proof of [1, Theorem 3.1] and notice that, for φ ∈ H1

∂Ω(Ω),
the interpolation operator in [13] allows to choose an approximation φG that equals
φ on ∂Ω and, thus, the estimator does not contain contributions on ∂Ω.

We now derive the discrete local lower bound (7b), which appears to be new.
Since ‖hG(f̄G − f)‖L2(E) appears in the oscillation indicator, we only have to deal
with terms that are related to (15). This suggests to construct discrete func-
tions curlφ ∈ V(G′) for a suitable refinement G ′ of G. To this end, we em-
ploy the Lagrange elements LE`+1(G′) of §3.1. Given a subdomain ω ⊂ Ω, set
LE`+1(G′;ω) := LE`+1(G′) ∩ H1

0 (ω). Since continuity of φ ∈ LE`+1(G′) across in-
terelement edges entails continuity of curl φ · n across those edges and curlφ is
element-wise a polynomial of degree ≤ `, we have curlLE`+1(G′;ω) ⊂ V(G′;ω) for

any union ω of elements in G. This motivates to use Ṽ(G′) = [curlLE`+1(G′), 0]
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and we choose |||·|||G = | · |, which does not depend on G. Thanks to (15) we obtain
(5g).

To bound ‖hG rotuG‖L2(E) for a given element E ∈ G, we now use a variant of
Verfürth’s constructive argument. We subdivide E by 3 bisections, thus creating
a node inside E. Let λE be the continuous piecewise affine hat function asso-
ciated with that node. Testing (15) with v = [curlφ, 0] where φ = λE rotuG ∈
LE`+1(G′;E) and standard scaling arguments then yield the desired bound. To pro-
ceed similarly for the remaining jump indicators, we need the following technical
lemma.

Lemma 2. Let S be an interval, divided into four subintervals GS = {S1, . . . , S4} of
same size, and let PS be the L2(S)-orthogonal projection onto LE`+1(GS)∩H1

0 (S).
Then ‖J‖2

L2(S) 4
∫

S JPSJ for all J ∈ P`+1(S).

Proof. Thanks to a standard scaling argument, we only have to prove the claim for
the interval S = (0, 1), decomposed by the points 1

4 , 1
2 , and 3

4 .

1 We first show that, for any J ∈ P`+1(S)\{0}, there exists a φ ∈ B := LE`+1(GS)∩
H1

0 (S) with
∫

S
Jφ 6= 0. Suppose this is not the case, i.e. there is a J ∈ P`+1(S)\{0}

such that
∫

S Jφ = 0 for all φ ∈ B.

Let φ1 be the continuous piecewise affine hat function at 1
4 . In view of our

assumption, we have

∀q ∈ P`(S)

∫ 1
2

0

Jqφ1 =

∫

S

Jqφ1 = 0.

Since φ1 > 0 on (0, 1
2 ), the left hand side defines weighted scalar product on L2(0,

1
2 ).

Hence J has `+ 1 roots in (0, 1
2 ). The same argument shows that J has also `+ 1

roots in ( 1
2 , 1). Since J ∈ P`+1(S) and has 2`+ 2 > `+ 1 roots in (0, 1), it has to

vanish, which is a contradiction.
2 Thanks to step 1, the L2(S)-orthogonal projection PS verifies PSJ 6= 0 for all
J ∈ P`+1 \ {0}. Consequently, the continuity of PS gives

min
‖J‖L2(S)=1

∫

S

JPSJ = min
‖J‖L2(S)=1

‖PSJ‖
2
L2(S) = α > 0,

which directly implies ‖J‖2
L2(S) ≤ α−1

∫

S
JPSJ for all J ∈ P`+1(S). �

To bound ‖h
1/2
G [[uG · t]] ‖S for a given interelement side S = E ∩ E ′, we bisect

E and E′ four times, entailing a subdivision of S into four subintervals of same
size. Testing (15) with v = [curlφ, 0] where φ is an extension of PS([[uG · t]]S) to
LE`+1(G′;E ∪ E′), Lemma 2, and standard arguments then conclude the proof of
(7b).

Marking strategy and refinement rule. We make the same assumptions on marking
strategy and refinement rule in §3.1.

Under the above assumptions, Theorem 1 ensures that

‖uk − u‖L2(Ω) → 0 and Ek → 0 as k → ∞.

This generalizes the convergence result of Carstensen and Hoppe [4] to Raviart-
Thomas and Brezzi-Douglas-Marini elements of any fixed order.
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[2] I. Babuška, M. Vogelius, Feedback and adaptive finite element solution of one-dimensional

boundary value problems, Numer. Math. 44 (1984), 75-102.
[3] F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods, Springer Series in

Computational Mathematics 15, Springer (1991).



CONVERGENCE OF FINITE ELEMENTS ADAPTED FOR WEAK NORMS 9

[4] C. Carstensen, R.H. W. Hoppe, Error Reduction and Convergence For An Adaptive Mixed

Finite Element Method, Math. Comp. 75 (2006), 1033–1042.
[5] Z. Chen, J. Feng, An adaptive finite element algorithm with reliable and efficient error

control for linear parabolic problems, Math. Comp. 73 (2004), 1167–1193.
[6] W. Dörfler, A convergent adaptive algorithm for Poisson’s equation, SIAM J. Numer. Anal.

33 (1996), 1106–1124.
[7] V. Girault, P. A. Raviart. Finite Element Approximation of the Navier-Stokes Equations,

Springer-Verlag, New York (1986).
[8] K. Mekchay, R.H. Nochetto, Convergence of adaptive finite element methods for general

second order linear elliptic PDE, SIAM J. Numer. Anal. 43 (2005), 1803–1827.
[9] P. Morin, R.H. Nochetto, K.G. Siebert, Data oscillation and convergence of adaptive

FEM, SIAM J. Numer. Anal. 38 (2000), 466–488.
[10] P. Morin, R.H. Nochetto, K.G. Siebert, Convergence of adaptive finite element methods,

SIAM Review 44 (2003), 631–658.
[11] P. Morin, K.G. Siebert, A. Veeser, A basic convergence result for conforming adaptive

finite elements, preprint no. 1/2007, Dipartimento di Matematica “F. Enriques”, Via C.
Saldini 50, 20133 Milano, Italy.

[12] A. Schmidt, K.G. Siebert, Design of Adaptive Finite Element Software. The Finite Element

Toolbox ALBERTA, Springer, 2005.
[13] L. R. Scott and S. Zhang, Finite element interpolation of nonsmooth functions satisfying

boundary conditions. Math. Comp. 54 (1990) 483–493.
[14] R. Stevenson, Optimality of a standard adaptive finite element method, Found. Comput.

Math. Published online: 5 July 2006. DOI 10.1007/s10208-005-0183-0.
[15] R. Verfürth, A review of a posteriori error estimation and adaptive mesh-refinement tech-

niques, Adv. Numer. Math., John Wiley, Chichester, UK, 1996.
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