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Abstract

In this article we develop a posteriori error estimates for general second order elliptic problems
with point sources in two- and three-dimensional domains. We prove a global upper bound and a
local lower bound for the error measured in a weighted Sobolev space. The weight considered is a
(positive) power of the distance to the support of the Dirac delta source term, and belongs to the
Muckenhoupt’s class A2. The theory hinges on local approximation properties of either Clément
or Scott-Zhang interpolation operators, without need of suitable modifications, and makes use of
weighted estimates for fractional integrals and maximal functions. Numerical experiments with an
adaptive algorithm yield optimal meshes and very good effectivity indices.

Keywords: elliptic problems, point sources, a posteriori error estimates, finite elements, weighted
Sobolev spaces

Mathematics Subject Classification (2000): 35J15, 65N12, 65N15, 65N30, 65N50, 65Y20

1 Introduction

The main goal of this article is to develop a posteriori error estimates for elliptic second order partial
differential equations over two- and three-dimensional domains with point sources. Elliptic problems
with Dirac measure source terms arise in modeling different applications as, for instance, the electric
field generated by a point charge, the acoustic monopoles or pollutant transport and degradation in an
aquatic media where, due to the different scales involved, the pollution source is modeled as supported
on a single point [1]. Other applications involve the coupling between reaction-diffusion problems taking
place in domains of different dimension, which arise in tissue perfusion models [7].

In spite of the fact that the solution of one such problem typically does not belong to H1, it can be
numerically approximated by standard finite elements, but there is no obvious choice for the norm to
measure the error. Babuška [3] and Scott [21] obtained a priori estimates for the error measured in L2

and in fractional Sobolev norms Hs, for s in some subinterval of (0, 1), depending on the dimension of
the underlying domain. Eriksson [9] showed optimal order error estimates in the L1 and W 1,1 norms,
for adequately refined meshes; he also obtained pointwise estimates far from the singularity and the
boundary. Seidman et. al. [23] consider elliptic and parabolic problems with measure-valued source
terms and prove a priori estimates in L2 and Lp(L2), respectively. A posteriori error estimates on two
dimensional domains have been obtained by Araya et. al. [2, 1] for the error measured in Lp (1 < p <∞)
and W 1,p (p0 < p < 2) for certain value of p0, and by Gaspoz et. al. [12] for the error measured in Hs

(1/2 < s < 1).
In a recent article, D’Angelo [6] proved the well-posedness of Poisson problem with singular sources on

weighted Sobolev spaces, over three-dimensional domains, obtaining also stability and optimal estimates
for a priori designed meshes, in the spirit of [9]. D’Angelo measures the error in H1

α = H1
d2α , where

d(x) = dist(x,Λ), α ∈ (0, 1), and Λ is the support of the singular source term, which is a smooth curve;
his results carry over immediately to two dimensional domains with point sources. The weighted Sobolev
space considered by D’Angelo is “larger” than H1(Ω) and seems to be more appropriate than the W 1,p

spaces with p < 2 used by Araya et. al., or the Hs spaces with s < 1 used by Gaspoz et. al., because the
weight weakens the norm only around the singularity, letting it behave like the usual W 1,2 = H1 norm
far from the location of the support of the Dirac’s delta.
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In this article, we develop residual type a posteriori error estimators for the norm measured in H1
α

as in [6]. We consider the following general elliptic problem on a Lipschitz domain Ω ⊂ R2 (R3), with a
polygonal (polyhedral) boundary ∂Ω{

−∇ ·
(
A∇u

)
+ b · ∇u+ cu = δx0 in Ω

u = 0 on ∂Ω,
(1)

where A ∈ L∞(Ω;Rn×n) is piecewise W 1,∞ and uniformly symmetric positive definite (SPD) over Ω,
i.e., there exist constants 0 < γ1 ≤ γ2 such that

γ1|ξ|2 ≤ ξTA(x)ξ ≤ γ2|ξ|2, ∀x ∈ Ω, ξ ∈ Rn, (2)

b ∈ W 1,∞(Ω;Rn), c ∈ L∞(Ω), and δx0 is the Dirac delta distribution supported at an inner point x0 of
Ω. We assume that c− 1

2 div(b) ≥ 0.
The main results of this article, stated in Theorems 5.1 and 5.3, are a global upper bound for the

error, measured in H1
α(Ω) for α ∈ I ⊂ (n2 − 1, n2 ) (see (12)), in terms of the a posteriori estimators and a

local lower bound up to some oscillation term. More precisely, given a shape-regular triangulation T , we
let U be the Galerkin approximation of the exact solution u with continuous finite elements of arbitrary
(fixed) degree, and prove that the a posteriori local error estimators ηT satisfy

‖U − u‖H1
α(Ω) ≤ CU

(∑
T∈T

η2T

)1/2

and CL ηT ≤ ‖U − u‖H1
α(ωT ) + oscT , ∀T ∈ T ,

with constants CU , CL that depend only on mesh regularity, the domain Ω, the problem coefficients and
α, and can be chosen independent of α on compact subintervals of I. The set ωT is the patch of all
neighbours of T in T , and oscT is an oscillation term, which is of higher order than ηT .

As we have already mentioned, a posteriori error estimates for elliptic problems with point sources
have been obtained in [2, 12] for two-dimensional domains. Even though a stability result has not been
proven for the norms considered in [2, 1, 12], uniqueness of discrete solutions is guaranteed by the positive
definiteness of the usual stiffness matrix associated to the Laplacian. When considering the weighted
spaces a discrete inf-sup condition can be proved (see Section 3), allowing us to conclude convergence
of adaptive methods by resorting to the general theory developed in [17]. Moreover, our theory is valid
in two and three dimensions, whereas the results from [2, 1, 12] cannot be immediately extended to the
three dimensional case.

In [2] the solution is seen as an element of W 1,p(Ω), for some p < 2, and the test functions belong to
W 1,p′

(Ω), with 1/p+1/p′ = 1 and thus p′ > 2. By Sobolev embeddings the test functions are continuous,
whence the usual proof for the upper bound can be done resorting to the Lagrange interpolant. The
same happens in [12], where the solution is seen as an element of H1−s(Ω) and the test functions belong
to H1+s(Ω) for 0 < s < 1/2. In this article we see the solution as an element of the weighted Sobolev
space H1

α(Ω) = {v :
∫
Ω
(v2 + |∇v|2) d2αx0

< ∞}, with dx0(x) = |x0 − x| and n
2 − 1 < α < n

2 , n being the
dimension of the underlying domain Ω. The test functions belong to H1

−α(Ω), and are not necessarily
continuous, but δx0(v) is well defined for all v ∈ H1

−α(Ω). On the one hand this seems advantageous
because the weight only weakens the norm around x0, but behaves as the usual H1 norm in subsets at
a positive distance to x0, besides the fact that estimates for two- and three-dimensional domains can
be obtained. On the other hand, it does not allow us to use Lagrange interpolation because the test
functions are not necessarily continuous. Instead, we resort to Clément, or Scott-Zhang operator, whose
well known properties are sufficient for our purposes. In contrast to [4], where weighted spaces appear
due to dimension reduction in an axisymmetrical problem, we do not need to modify the interpolation
operators, but just use their local approximation and stability properties stated in (31)–(32).

The rest of this article is organized as follows. In Section 2 we define the weighted spaces and
discuss the well-posedness of the problem. In Section 3 we specify the finite element spaces, and the
discrete solution, proving stability of the discrete formulation. In Section 4 we prove Poincaré type and
interpolation results on simplices, these will be instrumental for proving the main results in Section 5.
We end the article with some numerical simulations in Section 6 illustrating the behavior of an adaptive
algorithm based on the obtained a posteriori estimators.
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2 Weighted spaces and weak formulation

Let Ω ⊂ Rn be a bounded polygonal (n = 2) or polyhedral (n = 3) domain with Lipschitz boundary
and x0 an inner point of Ω. The usual test and ansatz space for elliptic problems is the Sobolev space
H1

0 (Ω) = W 1,2
0 (Ω) when the source term belongs to its dual. The source term considered in this article

does not belong to the dual space of H1
0 (Ω), because H

1
0 (Ω) is not immersed into C(Ω), the space of

continuous functions, but if n = 2 very little is missing, since W 1,p′

0 (Ω) and H1+s
0 (Ω) are immersed

into C(Ω) if p′ > 2 and s > 0. This fact was exploited in [2] and in [12] respectively, obtaining error
estimates for the error in W 1,p

0 (Ω) and in H1−s
0 (Ω) for some values of p < 2 and s > 0. In three

dimensions W 1,p′

0 (Ω) and H1+s
0 (Ω) are immersed in C(Ω) if p′ > 3 and s > 3/2, respectively, and the

theory from [2, 12] cannot be extended straightforwardly.
We follow here an idea proposed in [6], where weighted spaces are used, without modifying the

integrability power or the differentiability order. More precisely, for β ∈ (−n
2 ,

n
2 ), we denote by L

2(Ω,d2βx0
)

the space of measurable functions u such that

‖u‖L2
β(Ω) := ‖u‖L2(Ω,d2β

x0
) :=

∫
Ω

|u(x)|2 dx0(x)
2βdx <∞,

where dx0(x) = |x−x0| is the euclidean distance from x to x0. We will write L2
β(Ω) to denote L2(Ω,d2βx0

)
and observe that it is a Hilbert space equipped with the scalar product

〈u, v〉Ω,β :=

∫
Ω

u(x)v(x) dx0(x)
2βdx.

We also define the weighted Sobolev space H1
β(Ω) of weakly differentiable functions u such that

‖u‖H1
β(Ω) <∞, with

‖u‖H1
β(Ω) := ‖u‖L2

β(Ω) + ‖∇u‖L2
β(Ω) .

We immediately observe that, if 0 < α < n
2 , then H

1
−α(Ω) ⊂ H1(Ω) ⊂ H1

α(Ω) with continuity. The
goal is to use appropriate subspaces of H1

−α(Ω) and H1
α(Ω) for the test and ansatz space, respectively.

We need to prove that this leads to a stable formulation, and we thus recall some known facts about
weighted spaces.

The theory of weighted Lp spaces over n-dimensional domains is well developed and much attention
has been payed to the class of Muckenhoupt weights Ap, for which the Hardy-Littlewood Maximal
operator is bounded in Lp. The class Ap, 1 ≤ p < ∞, is defined as the sets of weights (nonnegative
measurable functions) w : Rn → R+ that satisfy:

sup
B=B(y,r)
y∈Rn, r>0

(
1

|B|

∫
B

w(x) dx

)(
1

|B|

∫
B

w(x)−
1

p−1 dx

)p−1

<∞,

where B(y, r) is the ball centered at y with radius r, and |B| is its Lebesgue measure; A∞ =
⋃

p≥1Ap.
The supremum on the left-hand side is called the Ap constant of w.

In our context of Hilbert spaces over two-dimensional and three-dimensional domains only the Muck-
enhoupt class A2 matters, and analyzing separately the cases |y − x0| > 2r and |y − x0| ≤ 2r it is easy
to prove that the weight function d2βx0

belongs to A2 if and only if −n
2 < β < n

2 , because in this case

1

n2 − (2β)2
≤ sup

B=B(y,r)

y∈R2, r>0

(
1

|B|

∫
B

d2βx0

)(
1

|B|

∫
B

d−2β
x0

)
≤ Cn

n2 − (2β)2
,

for some Cn > 1, and the supremum is infinite if β /∈ (−n
2 ,

n
2 ).

If we consider −n
2 < β < n

2 , the results from [14, 15, 16] imply that smooth functions are dense in
H1

β(Ω), and also a Rellich-Kondrachov theorem and a Poincaré inequality hold in H1
β(Ω).

As we will prove in Theorem 4.7, following the lines in the proof of [7, Theorem 4.2], for any n
2 − 1 <

α < n
2 there exists a constant C depending on α such that

|δx0(ϕ)| = |ϕ(x0)| ≤ C‖ϕ‖H1
−α(Ω), ∀ϕ ∈ C1(Ω̄).
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By the density of smooth functions in H1
−α(Ω) we conclude that there exists a unique linear continuous

map δx0 : H1
−α(Ω) → R such that δx0(ϕ) = ϕ(x0) for any smooth function ϕ ∈ C1(Ω̄).

Since we are considering Dirichlet boundary conditions, we define

Wβ := {u ∈ H1
β(Ω) : u|∂Ω

= 0},

and since d2βx0
belongs to A2, from [11, Theorem 1.3] it follows that Poincaré inequality holds in Wβ

and therefore ‖u‖Wβ
:= ‖∇u‖L2

β(Ω) is a norm in Wβ equivalent to the inherited norm ‖u‖H1
β(Ω). More

precisely, there exists a constant CP,β such that

‖u‖Wβ
≤ ‖u‖H1

β(Ω) ≤ CP,β ‖u‖Wβ
, u ∈Wβ , (3)

where CP,β blows up as |β| approaches n
2 .

Given n
2 − 1 < α < n

2 , the considerations above yield W−α ⊂ H1
0 (Ω) ⊂ Wα and δx0 ∈ (W−α)

′. We
thus say that u is a weak solution of (1) if

u ∈Wα : a(u, v) = δx0
(v), ∀ v ∈W−α, (4)

where a :Wα ×W−α → R is the bilinear form given by

a(u, v) =

∫
Ω

A∇u · ∇v + b · ∇u v + c u v, (5)

which is clearly well-defined and bounded in Wα ×W−α due to Hölder inequality.

2.1 Existence of a weak solution

We devote this section to study the well posedness of problem (4), which is a particular case of the
following problem: Given F ∈ (W−α)

′,

Find u ∈Wα such that a(u, v) = F (v), ∀ v ∈W−α. (6)

Notice that u is a solution to (6) if u = ū+ w̄, with

ū ∈Wα :

∫
Ω

A∇ū · ∇v = F (v), ∀ v ∈W−α, and (7)

w̄ ∈ H1
0 (Ω) : a(w̄, v) = l(v) := −

∫
Ω

(b · ∇ū+ cū)v, ∀ v ∈ H1
0 (Ω). (8)

In fact, since W−α ⊂ H1
0 (Ω), from (7) and (8) we have, for v ∈W−α,

a(u, v) = a(ū, v) + a(w̄, v) = F (v) +

∫
Ω

(b · ∇ū+ cū)v + a(w̄, v) = F (v).

Therefore, to prove the existence of solutions of (6), we just need to show that problems (7) and (8) have
solutions.

Let us first consider problem (7). We will use bold symbols to denote spaces of vector valued functions,
for instance, L2

β(Ω) = [L2
β(Ω)]

n, and 〈·, ·〉Ω will denote both the usual L2(Ω) and the L2(Ω) inner
products. To prove existence and uniqueness for problem (7) we will use the following decomposition of
L2

β(Ω).

Lemma 2.1 (Decomposition of L2
β(Ω)). Let β ∈ (−n

2 ,
n
2 ). For each τ ∈ L2

β(Ω), there exists a unique

pair (σ, z) ∈ L2
β(Ω)×Wβ such that

τ = ∇z + σ, 〈Aσ,∇w〉Ω = 0 ∀ w ∈W−β ,

‖∇z‖L2
β(Ω) ≤ 2 ‖τ‖L2

β(Ω) , ‖σ‖L2
β(Ω) ≤ ‖τ‖L2

β(Ω) .
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This is an immediate generalization of [6, Lemma 2.1], which states the same result for A = I. The
proof follows exactly the same lines, using that A is uniformly SPD over Ω, and is thus omitted.

We now use this decomposition to prove that the bilinear form of (7) satisfies an inf-sup condition.
Given u ∈Wα, let τ := ∇u d2αx0

∈ L2
−α(Ω). Using the decomposition of L2

−α(Ω), there exist σ ∈ L2
−α(Ω)

and v ∈W−α such that τ = ∇v+σ, 〈A∇w,σ〉Ω = 0, ∀ w ∈Wα and 2 ‖u‖Wα
= 2‖τ‖L2

−α(Ω) ≥ ‖v‖W−α
.

Then,

〈A∇u,∇v〉Ω = 〈A∇u, τ 〉Ω − 〈A∇u,σ〉Ω = 〈A∇u,∇ud2αx0
〉Ω ≥ γ1 ‖u‖2Wα

≥ γ1
2

‖u‖Wα
‖v‖W−α

,

where γ1 is given by (2). The same estimate still holds if we swap u and v and change the sign of α. So,
the following inf-sup conditions are valid:

inf
u∈Wα

sup
v∈W−α

∫
Ω
A∇u · ∇v

‖u‖Wα
‖v‖W−α

≥ γ1
2

and inf
v∈W−α

sup
u∈Wα

∫
Ω
A∇u · ∇v

‖u‖Wα
‖v‖W−α

≥ γ1
2
.

Besides, by Hölder inequality the bilinear form A[v, w] :=
∫
Ω
A∇v ·∇w is bounded inWα×W−α, whence

the generalized Lax-Milgram theorem due to Nečas [19, Theorem 3.3] leads to existence and uniqueness
of a solution ū to problem (7), which satisfies

‖ū‖Wα
≤ 2

γ1
‖F‖(W−α)′ . (9)

If b = 0 and c = 0 then ū is the solution to (6), and existence is proved.
Let us now consider problem (8) for b 6= 0 or c 6= 0, given ū the solution to (7). Since we have

assumed c − 1
2 div(b) ≥ 0, the bilinear form a : H1

0 (Ω) × H1
0 (Ω) → R given by (5) is continuous

and coercive, and thus, by Lax-Milgram theorem, problem (8) admits a unique solution w̄ ∈ H1
0 (Ω) if

l ∈ H−1(Ω) := (H1
0 (Ω))

′, where l(v) := −
∫
Ω
(b · ∇ū + cū)v dx, for v ∈ H1

0 (Ω). In order to prove that
l ∈ H−1(Ω) we establish first a couple of lemmas.

Lemma 2.2. If α ∈ (0, n2 ), then for all 1 ≤ p < n
2α , we have that d−2α

x0
∈ Lp(Ω).

Proof. Let R be large enough to yield B(x0, R) ⊃ Ω, then∫
Ω

d−2αp
x0

dx ≤
∫
B(x0,R)

d−2αp
x0

≤ 4π

∫ R

0

r−2αp+n−1dr =
4πR−2αp+n

−2αp+ n
<∞.

Lemma 2.3. If α ∈ (0, 1), then the following embedding holds:

H1(Ω) ↪→ L2
−α(Ω).

Proof. Let us first consider the case n = 2. Given α ∈ (0, 1), let p be fixed such that 1 < p < 1
α , and

denote by q its Lebesgue conjugate, that is 1
p + 1

q = 1. Then, by Hölder inequality, Lemma 2.2 and the

Sobolev embedding H1(Ω) ↪→ L2q(Ω) we have that, for all v ∈ H1(Ω),

‖v‖L2
−α(Ω) =

(∫
Ω

v2 d−2α
x0

) 1
2

≤
(∫

Ω

v2q
) 1

2q
(∫

Ω

d−2αp
x0

) 1
2p

≤ cα‖v‖H1(Ω),

where cα depends on Ω and α, and blows up when α approaches 1.
Now, assume n = 3, α ∈ (0, 1) and p = 3

2 . In this case we have the Sobolev embedding H1(Ω) ↪→
L6(Ω), which, together with Hölder inequality, Lemma 2.2 implies, for all v ∈ H1(Ω),

‖v‖L2
−α(Ω) =

(∫
Ω

v2 d−2α
x0

) 1
2

≤
(∫

Ω

v6
) 1

6
(∫

Ω

d−3α
x0

) 1
3

≤ cα‖v‖H1(Ω),

where cα depends on Ω and α, and blows up when α approaches 1.
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As a consequence of the following proposition and (9), since ū ∈Wα, l ∈ H−1(Ω) for α ∈ (n2 − 1, 1),
and in fact,

‖l‖H−1(Ω) ≤
2CP,αcα
γ1

max{‖b‖L∞(Ω), ‖c‖L∞(Ω)}‖F‖(W−α)′ ,

where CP,α is the constant from (3) and cα comes from Lemma 2.3

Proposition 2.4. If α ∈ (n2 − 1, 1) and ū ∈Wα, then for all v ∈ H1(Ω),∣∣∣∣∫
Ω

(b · ∇ū+ cū)v

∣∣∣∣ ≤ CP,αcα max{‖b‖L∞(Ω), ‖c‖L∞(Ω)}‖ū‖Wα‖v‖H1(Ω), (10)

with CP,α the constant from (3) and cα from Lemma 2.3.

Proof. From Lemma 2.3 it follows that∣∣∣∣ ∫
Ω

(b · ∇ū+ cū)v

∣∣∣∣ ≤ (‖b‖L∞(Ω) ‖∇ū‖L2
α(Ω) + ‖c‖L∞(Ω) ‖ū‖L2

α(Ω)

)
‖v‖L2

−α(Ω)

≤ max{‖b‖L∞(Ω), ‖c‖L∞(Ω)}(‖ū‖L2
α(Ω) + ‖∇ū‖L2

α(Ω))cα‖v‖H1(Ω),

and the assertion follows from (3).

Therefore, for α ∈ (n2 −1, 1), by Lax-Milgram theorem we conclude that problem (8) admits a unique
solution w̄ satisfying

‖w̄‖H1
0 (Ω) ≤ CCP,αcα‖F‖(W−α)′ , (11)

where C is a constant depending on the problem coefficients.
From now on, we will consider

α ∈ I :=


(0, 1) if n = 2 and b ∈W 1,∞(Ω;R2), c ∈ L∞(Ω),

( 12 , 1) if n = 3 and b ∈W 1,∞(Ω;R3), c ∈ L∞(Ω),

( 12 ,
3
2 ) if n = 3 and b = 0, c = 0,

(12)

and summarize the results of this section as follows. If ū denotes the unique solution of problem (7) and
w̄ denotes the unique solution of problem (8) then u := ū+ w̄ is a solution of problem (6), and from (9)
and (11), we get

‖u‖Wα
≤ C∗‖F‖(W−α)′ , (13)

with the constant C∗ depending on the domain Ω, the problem coefficients and α, and blows up when α
approaches the right endpoint of I, except when b = 0 and c = 0, because in this case C∗ = 2/γ1, which
is independent of α.

2.2 Uniqueness of weak solution

In this section we prove uniqueness of solution u ∈Wα of (6) for α ∈ I.
If b = 0 and c = 0, (6) coincides with (7) and uniqueness is a consequence of (9).
If b 6= 0 or c 6= 0, suppose that ũ is a solution of (6). We define the function w̃ := ũ− ū, with ū the

unique solution of (7). Then,

w̃ ∈Wα : a(w̃, v) = −
∫
Ω

(b · ∇ū+ cū)v, ∀ v ∈W−α. (14)

Now, we consider the following problem:

Find w ∈Wα such that

∫
Ω

A∇w · ∇v = L(v), ∀ v ∈W−α, (15)

where L is given by

L(v) := −
∫
Ω

(b · ∇ũ+ cũ)v.
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Since ũ ∈ Wα, we have that L ∈ (W−α)
′. Therefore problem (15) admits a unique solution w and we

thus conclude from (14) that w = w̃.
Consider now the problem:

Find w0 ∈ H1
0 (Ω) such that

∫
Ω

A∇w0 · ∇v = L(v), ∀ v ∈ H1
0 (Ω).

By Lemma 2.3, we have that L ∈ H−1(Ω) and as a consequence this problem admits a unique solution
w0 in H1

0 (Ω). Since W−α ⊂ H1
0 (Ω) ⊂Wα, w0 is also a solution of problem (15) and thus w0 = w = w̃ ∈

H1
0 (Ω). Hence, w̃ is a solution of problem (8) and by the uniqueness of this problem we have that w̃ = w̄

or equivalently ũ = ū+ w̄. Therefore, ũ = u and the solution of problem (6) is unique.
Finally, existence and uniqueness of solution to problem (6) for each F ∈ (W−α)

′ and the bound (13)
imply that the following inf-sup condition holds (cf. [19, Theorem 3.3]):

inf
u∈Wα

sup
v∈W−α

a(u, v)

‖u‖Wα‖v‖W−α

=
1

C∗
. (16)

Note that the inf-sup constant 1
C∗

depends on problem data and α, and degenerates toward 0 when α
approaches the right endpoint of I, except when b = 0 and c = 0, because in this case C∗ = 2/γ1, which
is independent of α.

3 Finite element discretization

In this section we define the finite element spaces that we consider, and let the discrete solution U be
the usual Galerkin approximation of the weak solution u. We then show that the discretization is stable
by proving an inf-sup condition which is independent of the mesh, which can be graded, but must be
shape-regular.

3.1 Discrete setting

Let T be a conforming triangulation of the domain Ω ⊂ Rn. That is, a partition of Ω into n-simplices
such that if two elements intersect, they do so at a full vertex/edge/face of both elements. We define the
mesh regularity constant

κ := sup
T∈T

diam(T )

ρT
,

where diam(T ) is the diameter of T , and ρT is the radius of the largest ball contained in it. Also,
the diameter of any element T ∈ T is equivalent to the local mesh-size hT := |T |1/n, with equivalent
constants depending on κ.

On the other hand, we denote the subset of T consisting of an element T and its neighbors by NT

and the union of the elements in NT by ωT . More precisely, for T ∈ T ,

NT := {T ′ ∈ T | T ∩ T ′ 6= ∅}, ωT :=
⋃

T ′∈NT

T ′.

We denote by EΩ to the set of sides (edges for n = 2 and faces for n = 3) of the elements in T which
are inside Ω and by E∂Ω to the set of sides which lie on the boundary of Ω. We define ωS as the union
of the two elements sharing S, if S ∈ EΩ, and as the unique element TS satisfying S ⊂ ∂TS if S ∈ E∂Ω.

For the discretization we consider Lagrange finite elements of degree ` ∈ N, more precisely, we let

V`
T := {V ∈ H1

0 (Ω) | V|T ∈ P`(T ), ∀ T ∈ T },

and observe that V`
T ⊂Wβ , for β ∈ (−n

2 ,
n
2 ). The discrete counterpart of (4) reads:

Find U ∈ V`
T such that a(U, V ) = δx0(V ), ∀V ∈ V`

T . (17)

Clearly, this discrete problem has a unique solution for each mesh; the system matrix is not affected
by the right-hand side and is invertible because the assumptions on the problem coefficients guarantee
the coercivity of the bilinear form a(·, ·) in V`

T × V`
T .
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Unlike [2, 1, 12] we also prove here a stability result, which by the theory of [17] will allow us to
conclude that adaptive algorithms with the a posteriori estimates developed here yield convergence.
Recall also that the discrete inf-sup is usually not used for the derivation of a posteriori estimates, only
the continuous one needs to be used.

3.2 Stability of the discrete problems

As we did for the infinite-dimensional problem, note that problem (17) is a particular case of the following
problem for a fixed n

2 − 1 < α < n
2 : Given F ∈ (W−α)

′, find

U ∈ V`
T : a(U, V ) = F (V ), ∀V ∈ V`

T . (18)

We also split U = Ū + W̄ with

Ū ∈ V`
T :

∫
Ω

A∇Ū · ∇V = F (V ), ∀V ∈ V`
T , (19)

W̄ ∈ V`
T : a(W̄ , V ) = −

∫
Ω

(b · ∇Ū + cŪ)V, ∀V ∈ V`
T . (20)

Then, defining U = Ū + W̄ , we have

a(U, V ) = a(Ū , V ) + a(W̄ , V ) = F (V ) +

∫
Ω

(b · ∇Ū + cŪ)V + a(W̄ , V ) = F (V ),

for all V ∈ V`
T . That is, U is a solution to (18). Therefore, we just need to bound the solutions to

problems (19) and (20) in Wα by ‖F‖(W−α)′ .
To do so, we apply a discrete decomposition lemma to the space

M`−1
T := {λ ∈ L2(Ω) | λ|T ∈ Pn

`−1(T ), ∀ T ∈ T } ⊃ ∇V`
T .

The bounds in the decomposition are obtained for the following discrete norm inM`−1
T which is equivalent

to the L2
β(Ω) norm, for β ∈ (−n

2 ,
n
2 ):

‖λ‖T ,β :=

(∑
T∈T

D2β
T ‖λ‖2L2(T )

) 1
2

, ∀λ ∈ M`−1
T ,

where DT := maxx∈T dx0(x). D’Angelo proposed this discrete norm and proved in [6, Lemma 3.2] that
it is equivalent to ‖λ‖L2

β(Ω), with equivalence depending only on κ, the polynomial degree ` and |β|. The
proof is based on the fact that for t ∈ (0, n2 ) fixed, there exists a constant ct, depending on κ, ` and t,
such that, if |β| ≤ t, then

1

ct
‖V ‖L2

β(T ) ≤ Dβ
T ‖V ‖L2(T ) ≤ ct ‖V ‖L2

β(T ) , ∀T ∈ T , ∀V ∈ P`(T ). (21)

The following lemma is an immediate generalization of [6, Lemma 3.3], with a similar proof, again,
taking into account that A is uniformly SPD.

Lemma 3.1 (Decomposition of M`−1
T ). Let β ∈ (−n

2 ,
n
2 ). For each λ ∈ M`−1

T , there exists a unique

couple (σ, Z) ∈ M`−1
T × V`

T such that

λ = ∇Z + σ, 〈Aσ,∇W 〉Ω = 0 ∀W ∈ V`
T ,

‖∇Z‖T ,β ≤ 2‖λ‖T ,β , ‖σ‖T ,β ≤ ‖λ‖T ,β .

By the same kind of arguments as in the continuous case we arrive at

inf
U∈V`

T

sup
V ∈V`

T

∫
Ω
A∇U · ∇V

‖U‖Wα‖V ‖W−α

≥ γ̃1 and inf
V ∈V`

T

sup
U∈V`

T

∫
Ω
A∇U · ∇V

‖U‖Wα‖V ‖W−α

≥ γ̃1,
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where γ̃1 depends on γ1 from (2), κ, ` and α, and goes to zero when α approaches n
2 . The unique solution

Ū of problem (19) satisfies

‖Ū‖Wα
≤ 1

γ̃1
‖F‖(W−α)′ . (22)

On the other hand, in view of Proposition 2.4, for α ∈ I, the linear form

L̄(V ) := −
∫
Ω

(b · ∇Ū + cŪ)V

satisfies ‖L̄‖H−1(Ω) ≤ C‖Ū‖Wα . Since the continuity and coercivity of the bilinear form a is inherited
from the continuous space to the discrete one, the solution W̄ of problem (20) satisfies

‖W̄‖H1
0 (Ω) ≤ C‖Ū‖Wα , (23)

where the generic constant C is independent of T .
Finally, taking into account (22) and (23), we get

‖U‖Wα
≤ C‖F‖(W−α)′ ,

where the generic constant C depends on T solely through κ, problem data, the polynomial degree `,
the parameter α ∈ I, and blows up as α approaches the right endpoint of I.

4 Some results in weighted spaces on simplices

In this section we state and prove some properly scaled bounds which are valid on the elements of the
triangulation, with constants depending only on mesh regularity. These bounds include a local Poincaré
inequality, a bound for ‖δx0‖(W−α)′ , and bounds for the error in Clément and Scott-Zhang interpolation
operators. Most of these bounds are known for the usual Sobolev norms, without weights.

This section is independent of the elliptic operator or the precise problem at hand. The results stated
here might be useful in other applications involving point sources.

From now on, we will write a . b to indicate that a ≤ Cb with C > 0 a constant depending on the
shape regularity κ of the mesh and possibly on the domain Ω ⊂ Rn, which is assumed polygonal (n = 2)
or polyhedral (n = 3) with a Lipschitz boundary. Also a ' b will indicate that a . b and b . a.

4.1 Classification of simplices

In order to prove our results we classify the elements according to their relationship to x0. We categorize
the elements of T into two disjoint classes, defined as follows:

T near := {T ∈ T | x0 ∈ ωT } and T far := T \ T near.

We establish a relationship between the classical local norms ‖·‖L2(T ) and the weighted ones ‖·‖L2
β(T ).

Lemma 4.1. The following statements hold:

(i) If −n
2 < β < n

2 and T ∈ T far, then hT . dT ' DT and

‖v‖L2
β(T ) ' Dβ

T ‖v‖L2(T ), ∀ v ∈ L2(T ), (24)

‖v‖L2
β(∂T ) ' Dβ

T ‖v‖L2(∂T ), ∀ v ∈ L2(∂T ). (25)

(ii) If 0 ≤ α < n
2 and T ∈ T near, then hT ' DT and

‖v‖L2
−α(T ) & h−α

T ‖v‖L2(T ), ∀ v ∈ L2
−α(T ), (26)

‖v‖L2
α(T ) . hαT ‖v‖L2(T ), ∀ v ∈ L2(T ). (27)
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Proof. Let T ∈ T far, then x0 /∈ ωT , and dT = minT dx0 = |x0 − x| for some x ∈ T , whence hT . dT
by Lemma 4.2 below. Therefore, DT . dT + hT . dT and thus dT ' DT , which implies (24). Since
dT ≤ min∂T dx0 ≤ max∂T dx0 ≤ DT , (25) holds.

Let T ∈ T near. Then x0 ∈ ωT , and thus DT ≤ diam(ωT ) . hT . Besides, if x1, x2 are two vertices of
T ,

hT ' |x1 − x2| ≤ |x1 − x0|+ |x0 − x2| ≤ 2DT .

Therefore hT ' DT , and thus (26) and (27) hold.

The following lemma states that a neigborhood of size ' hT of an element T is always contained in
ωT . This is known in the finite element community, but we could not find a proof. Since the one we
found is very short we decided to include it here for completeness. This result was used in the previous
lemma, and will be used in the proof of the lower bound (see Theorem 5.3).

Lemma 4.2. There exists a constant cκ,Ω > 0 depending on mesh regularity κ and the Lipschitz property
of ∂Ω such that, if T ∈ T , x ∈ T and y ∈ Ω\ωT , then |x−y| ≥ cκ,ΩhT . In other words, B(x, cκ,ΩhT )∩Ω ⊂
ωT for all x ∈ T and all T ∈ T .

Proof. Let T ∈ T , let φi, i = 1, . . . , n+ 1, be the canonical basis functions of V1
T corresponding to each

vertex of T , and let ψ =
∑n+1

i=1 φi. Then ‖∇ψ‖L∞(Ω) . 1/hT , and therefore

|ψ(x)− ψ(y)| ≤ 1

cκ,ΩhT
|x− y|, for all x, y ∈ Ω,

where cκ,Ω depends only on mesh regularity and the Lipschitz property of ∂Ω. Since ψ(x) = 1 if x ∈ T
and ψ(y) = 0 for y /∈ ωT the claim follows.

4.2 Local Poincaré inequality and interpolation estimates

The usual scaling arguments used to prove Poincaré inequalities on simplices do not lead to a uniform
constant for all the elements in the mesh. We thus need to resort to real analysis tools from the theory
of weighted inequalities [18, 11]. We start by recalling some definitions and important properties.

Let 0 < γ < n, the fractional integral Tγ(f) and the fractional maximal function f∗γ of a measurable
function f : Rn → R are defined, for x ∈ Rn by

Tγ(f)(x) :=

∫
Rn

f(y)

|x− y|n−γ
dy, f∗γ (x) := sup

B

1

|B|1−γ/n

∫
B

|f(y)| dy, (28)

where the supremum is taken over all balls B with center at x.
These two concepts are related through the following result, proved by Muckenhoupt and Wheeden

(cf. [18, Theorem 1]), for any n ∈ N.

Lemma 4.3. Let 0 < γ < n, w ∈ A∞ = ∪q≥1Aq, and 1 < p < ∞. Then, there exists a constant c > 0
such that (∫

Rn

|Tγ(f)|pw
) 1

p

≤ c

(∫
Rn

|f∗γ |pw
) 1

p

,

for all measurable functions f .

From [11, Lemma 1.1] and using the same arguments of the proof of [11, Theorem 1.2] the next result
follows, for the particular case γ = 1.

Lemma 4.4. Let w ∈ Ap, for some p, 1 < p < ∞. Then, there exists a constant c > 0, depending only
on the Ap constant of w, such that(∫

Rn

|f∗1 |pw
) 1

p

≤ cR

(∫
BR

|f |pw
) 1

p

,

for all ball BR of radius R > 0, and for all f measurable and supported in BR.

As a consequence of these results we obtain the following scaled Poincaré inequality.

10



Theorem 4.5 (Poincaré inequality). Let β ∈ (−n
2 ,

n
2 ). There exists a constant CP > 0 depending on β

and the mesh regularity κ such that, for all v ∈ H1
β(Ω),

‖v − vT ‖L2
β(T ) ≤ CPhT ‖∇v‖L2

β(T ) , ∀T ∈ T ,

where vT := 1
|T |
∫
T
v. The constant CP blows up when |β| approaches n

2 .

As we mentioned earlier, the usual scaling arguments do not yield a uniform constant CP , and we
thus resort to arguments from [11], where weighted Poincaré inequalities are proved on balls, with a
uniform constant depending only on the Ap constant of the weight.

Proof. Let v ∈ C1(Ω̄) and T ∈ T . Since T is convex, by [13, Lemma 7.16, p. 162] we have that

|v(x)− vT | ≤
diam(T )n

nhnT

∫
T

|∇v(z)|
|x− z|n−1

dz,

for every x ∈ T . Let BR be a ball containing T such that R . hT , and define f := |∇v|χT , where χT is

the characteristic function of T . Then recalling the definition (28),
∫
T

|∇v(z)|
|x−z|n−1 dz = T1(f)(x) and thus

by mesh regularity
|v(x)− vT | . T1(f)(x), a.e. x ∈ T. (29)

Since d2βx0
∈ A2 ⊂ A∞, due to Lemmas 4.3 and 4.4 it follows that

‖T1(f)‖L2
β(Rn) ≤ cR‖f‖L2

β(BR) = cR‖∇v‖L2
β(T ), (30)

for some constant c > 0, depending only on β, through the A2 constant of d2βx0
, which blows up as |β|

approaches n/2. The bounds (29) and (30) yield the result for smooth functions v. The assertion of the
theorem follows by density arguments.

We will now show some interpolation estimates in weighted spaces, which hinge on the Poincaré
inequality from Theorem 4.5, and are instrumental for proving the reliability of the error estimators. Let
P : H1

0 (Ω) → V1
T be either the Clément or the Scott-Zhang interpolation operator. It is well known [5, 22]

that, for all v ∈ H1(Ω),

‖v − Pv‖L2(T ) . hT ‖∇v‖L2(ωT ) , ∀T ∈ T , (31)

‖∇(v −Pv)‖L2(T ) . ‖∇v‖L2(ωT ) , ∀T ∈ T . (32)

Since H1
−α(Ω) ⊂ H1(Ω) for α > 0, P is also well defined for functions in H1

−α(Ω). Moreover, the
above estimates hold in weighted norms, as we show in the following proposition.

Proposition 4.6 (Interpolation estimates). Let P denote either the Clément or the Scott-Zhang inter-
polation operator. Let t ∈ (0, n2 ) and 0 ≤ α ≤ t. Then, there exists a constant CI > 0 depending on the
mesh regularity κ and t such that, for all v ∈ H1

−α(Ω),

‖v − Pv‖L2
−α(T ) ≤ CIhT ‖∇v‖L2

−α(ωT ) , ∀T ∈ T , (33)

‖∇(v − Pv)‖L2
−α(T ) ≤ CI ‖∇v‖L2

−α(ωT ) , ∀T ∈ T . (34)

The constant CI blows up as t approaches n/2.

Proof. Let v ∈ H1
−α(Ω). Let T ∈ T and vT := 1

|T |
∫
T
v. Then, by (21)

‖v − Pv‖L2
−α(T ) ≤ ‖v − vT ‖L2

−α(T ) + ctD
−α
T ‖vT − Pv‖L2(T )

≤ ‖v − vT ‖L2
−α(T ) + ctD

−α
T

(
‖vT − v‖L2(T ) + ‖v −Pv‖L2(T )

)
. ‖v − vT ‖L2

−α(T ) + cthTD
−α
T ‖∇v‖L2(ωT ) ,

where the last inequality follows from the classic Poincaré inequality and (31). From Theorem 4.5 and
the fact that dx0(x) . DT for all x ∈ ωT (33) holds.

Observe now that due to (21) and (32),

‖∇Pv‖L2
−α(T ) ≤ ctD

−α
T ‖∇Pv‖L2(T ) . ctD

−α
T ‖∇v‖L2(ωT ) . ct ‖∇v‖L2

−α(ωT ) ,

where we have used again that dx0 . DT in ωT . The assertion (34) follows.
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4.3 A local bound for δx0

In this section we present a local bound for δx0 , which is useful to establish the reliability of the a
posteriori error estimators (cf. Theorem 5.1 below). It is a local version of [7, Theorem 4.2], and as a
consequence of this result, if n

2 − 1 < α < n
2 , there is a unique linear continuous map

δx0
: H1

−α(Ω) → R

such that δx0(ϕ) = ϕ(x0) for each smooth function ϕ ∈ C∞(Ω). Our proof follows the same lines, but
we include it here to show the precise dependence on the scaling parameter.

Theorem 4.7 (A precise bound of δx0). Let n
2 − 1 < α < n

2 and T ∈ T such that x0 ∈ T . Then

|δx0(v)| . h
α−n

2

T ‖v‖L2
−α(T ) + Cαh

α+ 2−n
2

T ‖∇v‖L2
−α(T ) , ∀ v ∈ H1

−α(T ), (35)

where Cα := α
α−1
2

(α+1)
α+1
2

if n = 2 and Cα := (2α−1)
α−2
3

(2α+2)
α+1
3

if n = 3.

Note that the constant Cα blows up as α approaches n
2 − 1. This was expected because δx0 does not

belong to the dual space of H1
−α(Ω), for α = n

2 − 1, but only for n
2 − 1 < α < n

2 .

Proof. Assume n = 3 and let T ∈ T such that x0 ∈ T . By mesh regularity, there exist constants θ0, θ1,
φ0, φ1 and c0, depending only on κ, such that a sector ST with center at x0 described in local spherical
coordinates by

{(r, θ, φ) | 0 ≤ r ≤ c0hT , θ0 ≤ θ ≤ θ1, φ0 ≤ φ ≤ φ1},

is contained in T . Let ϕ ∈ C1(T ). Then, by using local spherical coordinates centered at x0 we have for
every r ∈ (0, c0hT ), θ ∈ (θ0, θ1) and φ ∈ (φ0, φ1),

ϕ(0, 0, 0) = ϕ(r, θ, φ)−
∫ r

0

∂ϕ

∂r
(t, θ, φ) dt,

so that, using the inequality (a+ b)2 ≤ 2a2 + 2b2, and integrating on ST we get

Ch3Tϕ(0, 0, 0)
2 ≤

∫ φ1

φ0

∫ θ1

θ0

∫ c0hT

0

ϕ(r, θ, φ)2r2 sin(θ)drdθdφ

+

∫ φ1

φ0

∫ θ1

θ0

∫ c0hT

0

(∫ r

0

∂ϕ

∂r
(t, θ, φ)dt

)2

r2 sin(θ)drdθdφ,

where C =
(φ1−φ0)(cos(θ0)−cos(θ1))c

3
0

6 . To bound the second term we will use the weighted Hardy inequality
(see Theorem 4.8 below) with p = q = 2, the weight functions being w1(t) = t2, w2(t) = t2−2α and the
positive function f(t) = |∂ϕ/∂r(t, θ)|. Since α > 1

2 , we have∫ r

0

w2(t)
1

1−p dt =

∫ r

0

t2α−2dt =
r2α−1

2α− 1
<∞, ∀ r > 0,

and

Dα := sup
r∈(0,c0hT )

(∫ c0hT

r

t2 dt

) 1
2 (∫ r

0

t2α−1 dt

) 1
2

= sup
r∈(0,c0hT )

[
(c0hT )

3 − r3

3

r2α−1

2α− 1

] 1
2

= h1+α
T

c1+α
0 (2α− 1)

α−2
3

(2α+ 2)
α+1
3

<∞.

Hence, by Theorem 4.8, the following inequality is valid∫ c0hT

0

(∫ r

0

∂ϕ

∂r
(t, θ, φ)dt

)2

r2dr ≤ 4D2
α

∫ c0hT

0

∣∣∣∣∂ϕ∂r (t, θ, φ)
∣∣∣∣2 r2−2αdr.
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Therefore, using the identity r = dx0(x) in ST and 1 ≤ dx0(x)
−2α(c0hT )

2α, for all x ∈ ST , we obtain

Ch3Tϕ(0, 0, 0)
2 ≤ c2α0 h2αT ‖ϕ‖2L2

−α(T ) + 4D2
α ‖∇ϕ‖2L2

−α(T ) ,

and thus
|ϕ(0, 0, 0)| . h

α− 3
2

T ‖ϕ‖L2
−α(T ) + Cαh

α− 1
2

T ‖∇ϕ‖L2
−α(T ) ,

where Cα = (2α−1)
α−2
3

(2+2α)
α+1
3

. The assertion follows by the density of C1(T ) in H1
−α(T ).

For the case n = 2, the proof follows the same lines, considering a circular sector described by polar
coordinates inside the triangle and the weight functions being w1(t) = t, w2(t) = t1−2α.

We end this section by stating a Hardy inequality [20] that was used in the proof of the previous
result.

Theorem 4.8 (Weighted Hardy inequality). Let 0 < p ≤ q <∞, 0 < R ≤ ∞ and w1 and w2 be weight
functions defined on (0,∞). Assume that, for every r > 0,∫ r

0

w2(t)
1

1−p dt <∞.

Then, the inequality (∫ R

0

(∫ r

0

f(t)dt

)q

w1(r)dr

) 1
q

≤ C

(∫ R

0

f(r)pw2(r)dr

) 1
p

, (36)

holds for all positive functions f on (0,∞) if and only if

D = sup
r∈(0,R)

(∫ R

r

w1(t)dt

) 1
q (∫ r

0

w2(t)
1

1−p dt

) p−1
p

<∞.

Moreover, the best constant in (36) satisfies the estimate

D ≤ C ≤ k(p, q)D,

where

k(p, q) =

(
p+ qp− q

p

) 1
q
(
p+ qp− q

(p− 1)q

) p−1
p

.

5 A posteriori error estimates

In this section we first present the a posteriori error estimators for the adaptive approximation of
problem (4) and then prove their reliability and efficiency.

The residual R(V ) of V ∈ V`
T is given by

R(V ) :W−α → R, 〈R(V ), v〉 := a(V, v)− δx0(v), ∀ v ∈W−α.

Let U ∈ V`
T be the solution of the discrete problem (17). Integrating by parts on each T ∈ T we have

that

〈R(U), v〉 =
∑
T∈T

(∫
T

Rv +

∫
∂T

Jv

)
− δx0(v), ∀ v ∈W−α, (37)

where R denotes the element residual given by

R|T := −∇ · [A∇U ] + b · ∇U + cU, ∀T ∈ T ,

and J the jump residual given by

J|S :=
1

2

[
(A∇U)|T1

· ~n1 + (A∇U)|T2
· ~n2

]
, if S ∈ EΩ, J|S = 0, if S ∈ E∂Ω.
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Here, T1 and T2 denote the elements of T sharing S, and ~n1 and ~n2 are the outward unit normals of T1
and T2 on S, respectively.

We define the a posteriori local error estimator ηT by

η2T :=

{
h2TD

2α
T ‖R‖2L2(T ) + hTD

2α
T ‖J‖2L2(∂T ) + h2α+2−n

T , if x0 ∈ T

h2TD
2α
T ‖R‖2L2(T ) + hTD

2α
T ‖J‖2L2(∂T ) , if x0 /∈ T

(38)

and the global error estimator η by η :=

(∑
T∈T

η2T

) 1
2

.

5.1 Reliability

We first prove the reliability of the global error estimator.

Theorem 5.1 (Global upper bound). Let α ∈ I and let u ∈ Wα be the solution of problem (4) and let
U ∈ V`

T be the solution of the discrete problem (17). Then, there exists a constant CU > 0 depending on
the problem data, the mesh regularity κ and the parameter α such that

‖U − u‖H1
α(Ω) ≤ CU η.

The constant CU blows up when α approaches an endpoint of I.

The proof follows the usual steps for proving the reliability of residual-type a posteriori error esti-
mators, making use, as in [2], of the continuous inf-sup condition, instead of the usual coercivity. It
is strongly based on the weighted estimates and the properties of the quasi-interpolation operator P
stated in the previous section. Recall that P can be either the Clément or the Scott-Zhang interpolation
operator.

Proof. Let u ∈Wα be the solution of problem (4) and U ∈ V`
T be the solution of the discrete problem (17).

Using the inf-sup condition (16) we have that

1

C∗
‖U − u‖Wα ≤ sup

v∈W−α

a(U − u, v)

‖v‖W−α

= sup
v∈W−α

〈R(U), v〉
‖v‖W−α

= ‖R(U)‖(W−α)′ . (39)

Now, let v ∈ W−α and let V = Pv, with P either the Clément or the Scott-Zhang interpolation
operator. Then, by (17), (37) and Hölder inequality it follows that

|〈R(U), v〉| = |〈R(U), v − V 〉|

≤
∑
T∈T

(
‖R‖L2(T ) ‖v − V ‖L2(T ) + ‖J‖L2(∂T ) ‖v − V ‖L2(∂T )

)
+ |δx0(v − V )|.

Applying a scaled trace theorem and the interpolation estimates (31) and (32), for the addition in the
right hand side of the last inequality, we have that∑

T∈T

(
‖R‖L2(T ) ‖v − V ‖L2(T ) + ‖J‖L2(∂T ) ‖v − V ‖L2(∂T )

)
.
∑
T∈T

(
‖R‖L2(T ) hT ‖∇v‖L2(ωT ) + ‖J‖L2(∂T ) h

1
2

T ‖∇v‖L2(ωT )

)
.
∑
T∈T

(
hTD

α
T ‖R‖L2(T ) + h

1
2

TD
α
T ‖J‖L2(∂T )

)
‖∇v‖L2

−α(ωT ) ,

and using the local bound for the Dirac delta (35), and the weighted interpolation estimates (33) and (34),

|δx0
(v − V )| . CICαh

α+ 2−n
2

T0
‖∇v‖L2

−α(ωT0
) ,

where T0 is any element containing x0. Thus, recalling the definition of the error estimators (38),

|〈R(U), v〉| . CICαη‖v‖W−α .

Therefore, the last estimation and (39) yield the desired assertion.
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5.2 Efficiency

The proof of the lower bound follows the usual steps using a bubble function to test the residual. We
first construct bubble functions and then prove the necessary estimates in Lemma 5.2.

Bubble function for the interior residual estimate. Given T ∈ T , the goal is to construct a
bubble function with its support in T of size ' hnT and at distance & DT of x0. To do this, we divide
each edge of T into four equal segments and consider the simplices which are determined by one vertex
of T and the segments that touch it (see Figure 1). We then let T∗ be the one of these simplices that is
farthest from x0, so that

hT . dT∗ := min
x∈T∗

dx0(x).

Figure 1: Simplex T and equivalent (shaded) sub-simplices,
obtained after dividing the edges into four equal segments. T∗
is the one which is farthest from x0 in order to guarantee that
DT . dT∗ .

Since DT ' dT ≤ dT∗ for T ∈ T far, and DT ' hT . dT∗ for T ∈ T near (cf. Lemma 4.1), we conclude
that

DT . dT∗ , ∀T ∈ T .
Besides, by translating and scaling a fixed bubble function ϕ̂ to the sub-element T∗ we obtain ϕT ∈

C∞
0 (Rn) with

δx0(ϕT ) = ϕT (x0) = 0, supp(ϕT ) ⊂ T∗, ‖ϕT ‖L∞(T ) = 1. (40)

Bubble function for the jump residual estimate. Given S ∈ EΩ, we denote T , T ′ the two elements
sharing S. The goal is now to construct a bubble function with its support in ωS of size ' hnT and at
distance & DT of x0. We proceed as before, dividing the edges of T and T ′ into four equal segments.
We then consider the simplices determined by the vertices of S and the segments that touch them.
This determines n patches of adjacent simplices. We then choose T∗ ⊂ T and T ′

∗ ⊂ T ′ such that
T∗ ∩ T ′

∗ =: S∗ 6= ∅ and
hT . dT∗ and hT ′ . dT ′

∗
,

the situation for n = 2 is depicted in Figure 2.

S

Figure 2: Triangles T , T ′ sharing a common side S.
The patch T∗ ∪ T ′

∗ is one of the shaded regions, the
one farther from x0, and S∗ = T∗ ∩ T ′

∗. Therefore
DT . dT∗ and DT ′ . dT ′

∗
.

By construction, we have
DT . dT∗ and DT ′ . dT ′

∗
.

In fact, if T ∈ T near, DT ' hT . dT∗ , and if T ∈ T far, DT ' dT ≤ dT∗ . Analogously, the estimate for T ′

holds.
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By translating and scaling a fixed bubble function ϕ̂ to S∗ we obtain ϕS ∈ C∞
0 (Rn) such that

δx0(ϕS) = ϕS(x0) = 0, supp(ϕS) ⊂ T∗ ∪ T ′
∗ ⊂ ωS , ‖ϕS‖L∞(ωS) = 1. (41)

The following result summarizes the properties of the just defined bubble functions ϕT and ϕS that
we need to prove the efficiency of the local error estimators.

Lemma 5.2. Let 0 < α < n
2 and T ∈ T . If ϕT is the bubble function satisfying (40), then,

‖pϕT ‖L2
−α(T ) . D−α

T ‖p‖L2(T ) , (42)

hT ‖∇(pϕT )‖L2
−α(T ) . D−α

T ‖p‖L2(T ) , (43)

for all p ∈ P`−1(T ). On the other hand, if S ∈ EΩ is a side of T and ϕS is the bubble function
satisfying (41), then,

h
− 1

2

T ‖pϕS‖L2
−α(ωS) . D−α

T ‖p‖L2(S) , (44)

h
1
2

T ‖∇(pϕS)‖L2
−α(ωS) . D−α

T ‖p‖L2(S) , (45)

for all p ∈ P`−1(S), where we extend p to ωS as constant along the direction of one side of each element
of T contained in ωS.

Proof. 1 Using that ‖ϕT ‖L∞(T ) = 1 and supp(ϕT ) ⊂ T∗, it follows that ‖pϕT ‖2L2
−α(T ) =

∫
T∗
p2ϕ2

T d−2α
x0

≤
d−2α
T∗

‖p‖2L2(T ). Taking into account that DT . dT∗ , (42) holds.

2 The usual scaling arguments yield

‖∇(pϕT )‖L2(T ) ' h−1
T ‖p‖L2(T ), ∀ p ∈ P`−1(T ),

and thus

‖∇(pϕT )‖2L2
−α(T ) =

∫
T∗

|∇(pϕT )|2 d−2α
x0

. d−2α
T∗

‖∇(pϕT )‖2L2(T ) . d−2α
T∗

h−2
T ‖p‖2L2(T ) .

In consequence, (43) follows from DT . dT∗ .
3 Let T ∈ T be such that S ⊂ T ⊂ ωS . Since ‖ϕS‖L∞(ωS) = 1 and supp(ϕS) ⊂ T∗ ∪ T ′

∗, we have

‖pϕS‖2L2
−α(T ) =

∫
T∗

p2ϕ2
S d−2α

x0
≤ d−2α

T∗

∫
T∗

p2 . d−2α
T∗

hT

∫
S∗

p2 ≤ d−2α
T∗

hT ‖p‖2L2(S) ,

and therefore, (44) holds, using that DT . dT∗ .
4 Let T ∈ T be such that S ⊂ T ⊂ ωS . The usual scaling arguments yield

‖∇(pϕS)‖L2(T ) ' h−1
T ‖p‖L2(T∩supp(ϕS)), ∀ p ∈ P`−1(T ).

Let us denote by T∗ the element which is contained in T (cf. Figure 2). Hence

‖∇(pϕS)‖2L2
−α(T ) =

∫
T∗

|∇(pϕS)|2 d−2α
x0

. d−2α
T∗

‖∇(pϕS)‖2L2(T )

' d−2α
T∗

h−2
T ‖p‖2L2(T∗)

. d−2α
T∗

h−1
T ‖p‖2L2(S∗)

≤ d−2α
TS∗

h−1
T ‖p‖2L2(S).

Finally, (45) follows due to DT . dT∗ .

As usually happens for residual based error estimators, the lower bound is local, and holds up to
some oscillation terms. In this context, we define the local oscillation oscT by

oscT :=


(
h2TD

2α
T

∥∥R−R
∥∥2
L2(ωT )

+ hTD
2α
T

∥∥J − J
∥∥2
L2(EΩ∩(ωT )0)

) 1
2

, if x0 ∈ T,(
h2TD

2α
T

∥∥R−R
∥∥2
L2(ωT )

+ hTD
2α
T

∥∥J − J
∥∥2
L2(∂T )

) 1
2

, if x0 /∈ T,
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where R|T ′ denotes the L2 projection of R on P`−1(T
′), for all T ′ ∈ T , and for each side S, J |S denotes

the L2 projection of J on P`−1(S). Notice that if x0 ∈ T the jump oscillations are considered over all
S ∈ EΩ that touch T , including those contained in ∂T and those not contained in ∂T .

The next result is usually called local efficiency of the error estimator, based on the fact that whenever
a local estimator is large, so is the corresponding local error, provided the local oscillation is relatively
small. Its proof follows the usual techniques taking into account the bounds from the last lemma and
the boundedness of the bilinear form, yielding

|〈R(U), v〉| = |a(U, v)− δx0(v)| = |a(U, v)− a(u, v)| ≤ Ca‖U − u‖H1
α(ω)‖v‖H1

−α(ω),

for all v ∈W−α with supp(v) ⊂ ω, for any ω ⊂ Ω. Here, the constant Ca > 0 depends on the coefficients
of the bilinear form a.

Theorem 5.3 (Local lower bound). Let α ∈ I, let u ∈Wα be the solution of problem (4) and let U ∈ V`
T

be the solution of the discrete problem (17). There exists a constant CL > 0 depending on the problem
data, the mesh regularity κ and the parameter α such that

CLηT ≤ ‖U − u‖H1
α(ωT ) + oscT ,

for all T ∈ T . The constant CL goes to zero if α approaches n
2 .

Proof. 1 Let T ∈ T . We analize first the residual R. Since

‖R‖L2(T ) ≤
∥∥R∥∥

L2(T )
+
∥∥R−R

∥∥
L2(T )

, (46)

it is sufficient to estimate
∥∥R∥∥

L2(T )
.

Let ϕT be the bubble function satisfying (40). The usual scaling arguments yield

∥∥R∥∥2
L2(T )

'
∥∥∥Rϕ 1

2

T

∥∥∥2
L2(T )

=

∫
T

R
2
ϕT =

∫
T

Rv =

∫
T

Rv +

∫
T

(R−R)v, (47)

where v := RϕT . Since supp(v) ⊂ T and δx0(v) = 0, the first integral in the right-hand side of (47),
using (42) and (43) satisfies∫

T

Rv = 〈R(U), v〉 ≤ Ca‖U − u‖H1
α(T )‖v‖H1

−α(T ) . Cah
−1
T ‖U − u‖H1

α(T )D
−α
T

∥∥R∥∥
L2(T )

,

while the second one satisfies∫
T

(R−R)v ≤
∥∥R−R

∥∥
L2(T )

‖v‖L2(T ) ≤
∥∥R−R

∥∥
L2(T )

∥∥R∥∥
L2(T )

.

Using the two last inequalities in (47) we have that

hTD
α
T

∥∥R∥∥
L2(T )

. Ca‖U − u‖H1
α(T ) + hTD

α
T

∥∥R−R
∥∥
L2(T )

. (48)

Finally, from (46) and (48) it follows that

hTD
α
T ‖R‖L2(T ) . Ca‖U − u‖H1

α(T ) + hTD
α
T

∥∥R−R
∥∥
L2(T )

. (49)

2 Secondly, we estimate the jump residual J . Let S be a side of T . As before, it is sufficient to bound
the projection J of J , since

‖J‖L2(S) ≤
∥∥J∥∥

L2(S)
+
∥∥J − J

∥∥
L2(S)

. (50)

Let ϕS be the bubble function from (41). Then, usual scaling arguments lead to

∥∥J∥∥2
L2(S)

.
∥∥∥Jϕ 1

2

S

∥∥∥2
L2(S)

=

∫
S

J
2
ϕS =

∫
S

Jv =

∫
S

Jv +

∫
S

(J − J)v, (51)
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with v := JϕS . Extending J to ωS as constant along the direction of one side of each element of T
contained in ωS , using that δx0(v) = 0 and supp(v) ⊂ ωS , the first integral in the right-hand side of (51)
can be bounded as follows:

2

∫
S

Jv = 〈R(U), v〉 −
∫
ωS

Rv

≤ Ca‖U − u‖H1
α(ωS)‖v‖H1

−α(ωS) + ‖R‖L2(ωS) ‖v‖L2(ωS)

. h
− 1

2

T Ca‖U − u‖H1
α(ωS)D

−α
T

∥∥J∥∥
L2(S)

+ h
1
2

T ‖R‖L2(ωS)

∥∥J∥∥
L2(S)

,

where in the last inequality we have used (44) and (45). The second integral in the right-hand side
of (51), satisfies ∫

S

(J − J)v ≤
∥∥J − J

∥∥
L2(S)

‖v‖L2(S) .
∥∥J − J

∥∥
L2(S)

∥∥J∥∥
L2(S)

.

The last two estimates and (51) yield

h
1
2

TD
α
T

∥∥J∥∥
L2(S)

. Ca‖U − u‖H1
α(ωS) + hTD

α
T ‖R‖L2(ωS) + h

1
2

TD
α
T

∥∥J − J
∥∥
L2(S)

. (52)

Thus, from (50) and (52) we have that

h
1
2

TD
α
T ‖J‖L2(S) . Ca‖U − u‖H1

α(ωS) + hTD
α
T ‖R‖L2(ωS) + h

1
2

TD
α
T

∥∥J − J
∥∥
L2(S)

.

Adding the last inequality over all the sides S ⊂ ∂T and using (49) we obtain

h
1
2

TD
α
T ‖J‖L2(∂T ) . Ca‖U − u‖H1

α(ωT ) + oscT . (53)

3 Recall that if x0 ∈ T the indicator ηT contains also a term h
α+ 2−n

2

T , we now prove that

h
α+ 2−n

2

T .
[
(
n

2
− α)−

1
2Ca‖U − u‖H1

α(ωT ) + oscT

]
.

Let φ ∈ C∞(Rn) with ‖φ‖L∞ = φ(0) = 1 and supp(φ) ⊂ B(0, 1). Let C = cκ,Ω from Lemma 4.2 so

that B(x0, ChT ) ⊂ ωT , and if ϕ(x) := φ
(

x−x0

ChT

)
then δx0(ϕ) = ϕ(x0) = 1, ‖ϕ‖L∞ = 1, ‖∇ϕ‖L∞ . 1

hT

and supp(ϕ) ⊂ B(x0, ChT ) ⊂ ωT . Thus, we also have that ‖ϕ‖L2(ωT ) . h
n
2

T , ‖∇ϕ‖L2(ωT ) . h
n−2
2

T , and

using a scaled trace theorem, ‖ϕ‖L2(∂T ) . h
n−1
2

T . On the other hand, applying Lemma 5.4 stated below

we have that ‖ϕ‖L2
−α(ωT ) . (n2 − α)−

1
2h

n
2 −α

T and ‖∇ϕ‖L2
−α(ωT ) . (n2 − α)−

1
2h

n−2
2 −α

T . Therefore,

1 = δx0(ϕ) = a(u, ϕ) = a(u− U,ϕ) + a(U,ϕ)

≤ Ca‖U − u‖H1
α(ωT )‖ϕ‖H1

−α(ωT ) +
∑

T ′⊂ωT

(∫
T ′
Rϕ+

∫
∂T ′

Jϕ

)
≤ Ca‖U − u‖H1

α(ωT )‖ϕ‖H1
−α(ωT ) +

∑
T ′⊂ωT

‖R‖L2(T ′) ‖ϕ‖L2(T ′) + 2
∑

S⊂(ωT )0

‖J‖L2(S) ‖ϕ‖L2(S)

.

(
n

2
− α)−

1
2Ca‖U − u‖H1

α(ωT ) +
∑

T ′⊂ωT

hT ′Dα
T ′ ‖R‖L2(T ′) +

∑
S⊂(ωT )0

h
1
2

T ′D
α
T ′ ‖J‖L2(S)

h
−α+n−2

2

T .

The last inequality with the estimates obtained in steps 1 and 2 complete the proof.

Lemma 5.4. If 0 < α < n
2 and T ∈ T , then∥∥d−α

x0

∥∥
L2(T )

. 1√
n
2 − α

h
n
2 −α

T .
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Proof. Let T ∈ T and let x̃0 ∈ T such that dx0(x̃0) = |x̃0 − x0| = dist(x0, T ). Then, if we define
dx̃0(x) := |x− x̃0| we have that

dx̃0(x) ≤ dx0(x), ∀ x ∈ T,

and thus, if 0 < α < n
2 ,∥∥d−α
x0

∥∥
L2(T )

≤
∥∥d−α

x̃0

∥∥
L2(T )

≤
∥∥d−α

x̃0

∥∥
L2(B(x̃0,κhT ))

. 1√
n
2 − α

h
n
2 −α

T .

As an immediate consequence of Theorem 5.3, adding over all elements in the mesh we obtain the
efficiency of the global error estimator.

Theorem 5.5 (Global lower bound). Let α ∈ I, let u ∈ Wα be the solution of problem (4) and let
U ∈ V`

T be the solution of the discrete problem (17). There exists a constant CL > 0 depending on the
problem data, the mesh regularity κ and the parameter α such that

CLη ≤ ‖U − u‖H1
α(Ω) + osc,

where osc is the global oscillation defined by osc :=
(∑

T∈T osc2T
) 1

2 , and the constant CL goes to zero if
α approaches n

2 .

Remark 5.6 (Convergence of adaptive algorithms). The general convergence theory from [17] states
that if the discretization of a linear problem is stable, the a posteriori error estimators constitute an
upper bound for the error and if there holds a discrete local lower bound, up to oscillation terms,
then any adaptive algorithm marking at least the element with the largest indicator will converge.
Our indicators, in the framework of the weighted spaces considered here, fulfill all those assumptions,
yielding convergence. For the discrete lower bound it is enough to observe that discrete bubble functions
ϕT and ϕS can be constructed on sufficiently refined meshes, so that they satisfy (40), (41) and thus
also Lemma 5.2.

6 Numerical experiments

In this section we report some numerical experiments that document the behavior of the adaptive al-
gorithm based on our a posteriori estimators for the error in Wα norm. We implemented a loop of the
usual form

Solve −→ Estimate −→ Mark −→ Refine.

The step Solve consisted in solving the discrete system for the current mesh, the step Estimate
consisted in computing the a posteriori error estimators ηT for a given value of α. In the step Mark
we selected in M for refinement those elements T ∈ T with largest estimators ηT until

∑
T∈M η2T ≥

0.5
∑

T∈T η
2
T , i.e., we used the Dörfler strategy with parameter 0.5. The step Refine consisted in

performing two bisections to each marked element, and refining some extra elements in order to keep
conformity of the meshes, using the newest-vertex bisection. We used a custom implementation in
MATLAB.

We present two examples on two-dimensional domains, using piecewise linear finite elements. The first
one considering a known solution on an L-shaped domain, and the second one based on the computation
of an unknown solution on a rectangle, with variable coefficients, simulating a wiggling flow on a canal.

Example 1. We consider the boundary value problem −∆u = δ(0.5,0.5) in the L-shaped domain Ω =

(−1, 1)2 \ [0, 1)× (−1, 0] ⊂ R2 with exact solution u(x) = − 1
2π log |x− (0.5, 0.5)|+ |x|2/3 sin(2θ/3), (θ the

angle measured from 0 to 3π/2 in Ω), and Dirichlet boundary conditions.
The goal of this example is to test the behavior of the adaptive method guided by the a posteriori

estimators ηT for different values of α, in a problem with two singularities. One produced by the Dirac
delta on the right-hand side and another one produced by the reentrant corner. Our theory predicts that

η :=
(∑

T∈T η
2
T

)1/2
is equivalent to the error in Wα norm provided 0 < α < 1.
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In Figure 3 we show the decay of theWα and the L2(Ω) norm of the error u−U , versus the number of
Degrees of Freedom (DOFs) in logarithmic scales, for α = 0.1, 0.3, 0.5, 0.7, 0.9. We observe the optimal
decay (#T )−1/2 and (#T )−1, respectively. This is the same decay proved by D’Angelo for properly
graded meshes [6], making use of the cardinality results from [9]. As is usual with adaptive methods, the
optimal cardinality is obtained automatically, without any fine tuning or additional requirement on the
meshes.

We also plot the effectivity index ‖u − U‖Wα/η and observe that it remains between 0.12 and 0.35
for all the considered values of α, showing the robustness of the estimator with respect to α, with no
degeneracy as α approaches the endpoints of I. This is better than expected according to our theory.
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Figure 3: Exact errors and effectivity indices for Example 1. We plot the Wα (left) and the L2(Ω) (middle)
norm of the error u − U versus the number of Degrees of Freedom (DOFs) in logarithmic scales, for different
values of α. We observe the optimal decay (#T )−1/2 and (#T )−1, respectively. We also plot the effectivity index
‖u− U‖Wα/η and observe that it remains between 0.12 and 0.35 for all the considered values of α, showing the
robustness of the estimator with respect to α.

In Figure 4 we show the decay of the Wα and the L2(Ω) norm of the error u − U , for values of α
very close to zero. We show the behavior for α = 0.05, 0.1, 0.15, 0.2 and observe the optimal decays for
the cases α ≥ 0.1. The algorithm stopped after 53 iterations in the case α = 0.05, with a mesh of 2544
elements and 1286 degrees of freedom (DOFs). The refinement is concentrated solely around the support
of the Dirac delta, leading to very small elements, with diameter of order 2−53. The resulting system
matrix was singular to working precision. We also show the effectivity indices for these values of α and
observe that they do not degenerate as α approaches zero.
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Figure 4: Exact errors and effectivity indices for Example 1 and α very small. We plot the Wα (left) and
the L2(Ω) (middle) norm of the error u − U versus the number of Degrees of Freedom (DOFs) in logarithmic
scales, for different values of α. We observe the optimal decay for all the considered values, except for the
smallest value α = 0.05. In this extreme situation the algorithm refines purely around (0.5, 0.5) and the elements
become excessively small, leading to a nearly singular system matrix (to the working precision) not allowing
computation beyond a mesh with 2544 elements and 1286 DOFs, obtained after 53 iterations. The effectivity
index ‖u− U‖Wα/η, plotted on the right, remains bounded between 0.11 and 0.32.

The meshes after 4, 8 and 12 iterations for α = 0.25, 0.5, 0.75 are plotted in Figure 5. The number of
elements of the corresponding meshes is indicated in each picture, and the stronger grading obtained for

20



smaller values of α is not so apparent for these values of α, although the case α = 0.25 is much different
than the other two cases. It is worth observing that the corner singularity is not noticed for α = 0.25
after 8 iterations of the adaptive algorithm, and it is immediately noticed for α bigger (see also Figure 6).

α = 0.25 α = 0.5 α = 0.75

#T = 122 #T = 125 #T = 93

#T = 324 #T = 386 #T = 304

#T = 542 #T = 1215 #T = 1460

Figure 5: Meshes for Example 1. We show the meshes after 4 (top), 8 (middle) and 12 (bottom) iterations for
α = 0.25 (left), α = 0.5 (middle) and α = 0.75 (right). The number of elements of the corresponding meshes is
indicated in each picture, and the stronger grading obtained for smaller values of α is not so clearly visible. It
is worth observing that the corner singularity is not noticed at all for α = 0.25 after 8 iterations of the adapive
algorithm, and barely after 12 iterations, but it is immediately noticed for α big. In the latter case the refinement
is more spread throughout the domain, due to the smaller relative importance of the singularity introduced by
δx0 .

We also plot meshes with a similar number of elements for values of α = 0.1, 0.3, 0.5 in Figure 7. The
fact that the singularity introduced by the Dirac delta is less severe when the error is measured in Wα

for bigger α is noticeable in this picture. The refinement is thus more spread in this case.
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α = 0.25 α = 0.5 α = 0.75

iter = 13 iter = 10 iter = 10
#T = 590 #T = 616 #T = 612

Figure 6: Meshes for Example 1 with similar number of elements. We show meshes for different values of α and
similar number of elements. There is no significant difference for the values of α = 0.5, 0.75.

α = 0.1 α = 0.3 α = 0.5

iter = 20 iter = 15 iter = 13
#T = 900 #T = 897 #T = 879

Figure 7: Meshes for Example 1 with similar number of elements. We show meshes for different values of α close
to zero and similar number of elements. We can observe that for smaller values of α the meshes are more strongly
graded at (0.5, 0.5) where the Dirac delta is supported. For α big the algorithm notices early the presence of the
corner singularity.
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Example 2. In this example we let Ω = (0, 3)× (0, 1) and consider the problem

−0.02∆u+

[
2

sin(5x1)

]
· ∇u+ 0.1u = δ(0.2,0.4) in Ω,

u = 0 on ∂Ω ∩ {x1 < 3},
∂u

∂n
= 0 on ∂Ω ∩ {x1 = 3},

which is a diffusion-advection-reaction equation, typical from pollutant transport and degradation in
aquatic media.

Figure 8: Meshes for Example 2. We show the meshes obtained by the adaptive loop after 10, 13, 16 and 19
iterations, with 398, 918, 2409 and 10608 elements, respectively.

A sequence of meshes is presented in Figure 8. The solution in the final mesh, with 22256 elements
and 11212 DOFs can be observed in Figure 9. The computation was done with the same adaptive
algorithm of the previous example, with α = 0.5.
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Figure 9: Final solution for Example 2, obtained by the adaptive loop after 20 iterations, on a mesh with 22256
elements and 11212 DOFs. The error estimator for this mesh is 0.024, which is a 2.2% of the estimator for the
initial coarsest mesh.
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