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Abstract. We propose a numerical method to approximate the solution of
a nonlocal diffusion problem on a general setting of metric measure spaces.

These spaces include, but are not limited to, fractals, manifolds and Euclidean

domains. We obtain error estimates in L∞(Lp) for p = 1,∞ under the sole
assumption of the initial datum being in Lp. An improved bound for the error

in L∞(L1) is obtained when the initial datum is in L2. We also derive some

qualitative properties of the solutions like stability, comparison principles and
study the asymptotic behavior as t → ∞. We finally present two examples on

fractals: the Sierpinski gasket and the Sierpinski carpet, which illustrate on

the effect of nonlocal diffusion for piecewise constant initial datum.

1. Introduction and Main Result

Many results from classical harmonic analysis have been developed on more
general metric measure spaces, containing typical fractals and manifolds. However,
the study of differential equations in such a primitive context are under development
(see [BHS14, LS14, SST13, IRS13, QS13, BKS13, OS12] and references therein).
Kigami defined a Laplacian on the Sierpinki gasket in [Kig89], and extended his
construction to a wider class of fractals in [Kig93]. This set the stage for an analytic
study of the analogs of some of the classical partial differential equations on these
fractals, which are a particular case of metric measure spaces.

Linear nonlocal diffusion equations of the form

ut(x, t) =

ˆ
Rn

J(x− y)[u(y, t)− u(x, t)] dy,

have been widely used to model diffusion problems (see [Fif03]), and can be gen-
eralized as follows (see [Act14] or [RBSG14]). Let (X, d, µ) be a metric measure
space. Given T ∈ R+ fixed, f ∈ L1(X,µ) and J : X × X → R+ we can consider
the following nonlocal diffusion problem:

(1.1)

ut(x, t) =

ˆ
X

J(x, y)[u(y, t)− u(x, t)] dµ(y), x ∈ X, t ∈ (0, T ),

u(x, 0) = f(x), x ∈ X.

where the equalities are understood in the sense of L1(X,µ). The well posedness
of (1.1) has been addressed in [Act14] and [RBSG14] for the metric measure space
setting (see [CER09] for the Euclidean case). It has been proved that for each
f ∈ L1(X,µ) there exists a unique function u belonging to

BT := C([0, T ];L1(X,µ)) ∩ C1((0, T );L1(X,µ)),

which solves problem (1.1). Here C([0, T ];L1(X,µ)) denotes the space of continuous
functions from [0, T ] to L1(X,µ), i.e., u(·, t) ∈ L1(X,µ) for each t ∈ [0, T ] and
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‖u(·, t) − u(·, t + h)‖L1 → 0 when h → 0; and C1
(
(0, T );L1(X,µ)

)
denotes the

space of functions with continuous Frechet’s derivative in L1, i.e., there exists v ∈
C((0, T );L1(X,µ)) such that∥∥∥∥u(·, t+ h)− u(·, t)

h
− v(·, t)

∥∥∥∥
L1

−→ 0,

when h→ 0, for each t ∈ (0, T ). In such case we write ut = v.
Nevertheless, no explicit form of the solution is known. The goal of this article

is to propose a general method for the approximation of this solution in metric
measure spaces, solving discrete problems, and provide error estimates, analogous
to those in [PLR11] which hold in domains of Rn. Also, as in [PLR11], we study
the asymptotic behavior as t→∞ of the solutions of (1.1).

In order to define the discrete solutions, let us assume that we can decompose
X into a union of K pairwise disjoint measurable subsets, i.e. we can write X =⋃K
k=1Xk, with Xk∩Xj = ∅ if k 6= j. We shall refer to this sets Xk as the components

of the space X.
For each k let us fix a point xk ∈ Xk, that we shall call the representative

point of the component Xk. Let X be the set of all the representative points,
i.e. X = {xk ∈ Xk : 1 ≤ k ≤ K}, and let ν be the measure defined on X by
ν({xk}) = µ(Xk). Then (X , d, ν) is also a metric measure space.

Problem (1.1) considered on (X , d, ν), with a preassigned initial condition f =
[f1, f2, . . . , fK ] ∈ RK , can be equivalently written as

(1.2)


ut(xi, t) =

K∑
j=1

J(xi, xj)[u(xj , t)− u(xi, t)]µ(Xj), i ∈ IK , t ∈ (0, T ),

u(xi, 0) = fi, i ∈ IK ,
where IK := {1, 2, . . . ,K}. Notice that (1.2) is a homogeneous first-order linear
system of ordinary differential equations. Indeed, if we denote ui(t) := u(xi, t),
u(t) = [u1(t), u2(t), . . . , uK(t)] and A = (aij)

K
i,j=1 the matrix given by

aij =

{
−
∑K
j=1
j 6=i

J(xi, xj)µ(Xj), if i = j.

J(xi, xj)µ(Xi), if i 6= j,

then the first equation in (1.2) can be rewritten as

du

dt
= Au.

Therefore, u(t) = eAtf is the unique solution, it belongs to C∞(R+) and can be
easily approximated using a computer algebra system.

We now extend u and f to X × (0, T ) as follows

U(x, t) := uk(t) and F (x) := fk for every x ∈ Xk.

In other words, if IA(x) denotes the indicator function on the set A,

(1.3) U(x, t) =

K∑
k=1

uk(t)IXk
(x) and F =

K∑
k=1

fk IXk
(x),

so both are constant on each component Xk. We shall refer to F as the extension
of f and U as the extended solution associated to f .

The following error estimate between U and u is the main result of this article:

Main Result. Let u be the solution of (1.1) for a given f ∈ L1(X,µ), and let U
be the extended solution associated to a given f ∈ RK . Then

|||u− U |||1 := max
0≤t≤T

‖u(·, t)− U(·, t)‖L1 ≤ Cξ + ‖f − F‖L1 ,
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where F is the extension of f and ξ depends on max{diam(Xk) : k ∈ IK} and
regularity properties of J . Moreover, if f ∈ C(X), then

|||u− U |||∞ := max
0≤t≤T

‖u(·, t)− U(·, t)‖L∞ ≤ Cξ + ‖f − F‖L∞ .

In both cases C denotes a constant which depends on J but is otherwise independent
of the particular decomposition of X.

We want to point out the following remarks concerning the above result.

• The approximation U of u is as good as the approximation F of f , except
for the term ξ measuring the approximation of J by piecewise constant
kernels. This term will have the form δr, where δ = max{diam(Xk) : k ∈
IK} and r > 0 is the Lipschitz regularity of J . In the particular case of f
and J Lipschitz continuous, we obtain |||u− U |||∞ ≤ Cδr.

• In every bounded metric space with finite Assouad dimension, and in par-
ticular in every bounded space of homogeneous type, we can decompose
the space in such a way that δ is as small as desired (see [Chr90], [ABI07]
or [HK12]).

• In non-atomic spaces of homogeneous type, such as manifolds and typi-
cal fractals, the aforementioned decomposition can be obtained such that
max{µ(Xk) : k ∈ IK} is small, allowing the elementary function F to
be as close to f as desired, choosing fk = 1

µ(Xk)

´
Xk

f dµ. Moreover, if

f ∈ C(X), F can be constructed using fk = f(xk).
• The first numerical method for computing approximate solutions of this

kind of nonlocal diffusion problems was presented in [PLR11] for domains
of Rn. We generalize that result to metric measure spaces and provide
a different proof, by considering the approximations as solutions to prob-
lem (1.1) for piecewise constant kernels J̄ , rather than looking at the so-
lution at points. Indeed, the function U is the unique solution in BT of
problem (1.1) with kernel J̄ and initial datum F (see Lemma 3.2). So that
u and U satisfy the same qualitative properties (see Section 2) without
having to prove a discrete version of the results.

The paper is organized as follows. In Section 2 we present the setting and we
prove some qualitative properties of the solution. We shall use these results to show
our main result, which is precisely stated in Theorem 3.1 and proved in Section 3. In
Section 4 we improve the error estimation given in the main result for the particular
case that the initial datum f ∈ L2(X,µ). Section 5 is devoted to apply the results
on the Sierpinski gasket and the Sierpinski carpet. Finally in Section 6 we state
some conclusions and remarks.

2. Setting and qualitative properties

Let X be a set. A quasi-distance on X is a non-negative symmetric function d
defined on X × X such that d(x, y) = 0 if and only if x = y, and there exists a
constant K ≥ 1 such that

d(x, y) ≤ K(d(x, z) + d(z, y)), ∀x, y, z ∈ X.

A quasi-distance d on X induces a topology through the neighborhood system given
by the family of all subsets of X containing a d-ball B(x, r) = {y ∈ X : d(x, y) < r},
r > 0 (see [CW71], [MS79]).

Throughout this paper (X, d, µ) shall be a compact quasi-metric measure space
such that the d-balls are open sets with positive µ-measure, and µ is a finite non-
negative Borel measure on X.
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Also, J : X×X → R+ shall be a measurable function with respect to the product
σ-algebra in X ×X having the following properties:

(J1) J(x, y) = J(y, x) for all x, y ∈ X.
(J2) The integral

´
X
J(x, y) dµ(x) is positive and uniformly bounded in y ∈ X.

It is worth mentioning that assumptions (J1) and (J2) guarantee that prob-
lem (1.1) has a unique solution in BT for each f ∈ L1(X,µ), and it belongs
to C([0, T ];C(X)) ∩ C1((0, T );C(X)) if f ∈ C(X) (see [Act14, Thm. 8.2.2 and
Lemma 8.3.1] or [RBSG14]). In this section we shall analyze some qualitative
properties of this solution: conservation of the total mass, a comparison principle,
stability and asymptotic behavior as t → ∞. These properties are analogous to
well known properties in the Euclidean case.

Proposition 2.1 (Conservation of total mass). Let f ∈ L1(X,µ) and let u be the
solution of (1.1). Thenˆ

X

u(x, t) dµ(x) =

ˆ
X

f(x) dµ(x), for all t > 0.

Proof. Notice that for each t > 0 we have

u(x, t) = f(x) +

ˆ t

0

ˆ
X

J(x, y)[u(y, s)− u(x, s)] dµ(y) ds, a.e. x ∈ X.

The assertion follows after integrating on x over X, applying Fubini’s theorem and
using the symmetry of J . �

In order to state the stability of the problem, which is contained in Proposi-
tion 2.6, we shall first prove some previous results.

Lemma 2.2. If u ∈ BT then the scalar function g : R→ R, g(t) = ‖u+(·, t)‖L1 is
weakly differentiable on [0, T ] and

d

dt
‖u+(·, t)‖L1 =

ˆ
X

ut(x, t)I{u(·,t)>0}(x) dµ(x),

where u+(x, t) = max{u(x, t), 0} is the positive part of u.

Remark 2.3. Notice that if u−(x, t) = max{−u(x, t), 0} denotes the negative part
of u, then we have that u−(x, t) = (−u)+(x, t), so that Lemma 2.2 yields

d

dt
‖u−(·, t)‖L1 = −

ˆ
X

ut(x, t)I{u(·,t)<0}(x) dµ(x).

Proof of Lemma 2.2. For ε > 0, let uε = ϕε ◦ u with

ϕε : R→ R, ϕε(s) =

{√
s2 + ε2 − ε, if s > 0,

0, if s ≤ 0.

Since ϕε(s) → max{s, 0} uniformly in s ∈ R and 0 ≤ ϕε(s) ≤ max{s, 0}, for all
s ∈ R, the dominated convergence theorem in X yields, as ε→ 0,

‖uε(·, t)‖L1 =

ˆ
X

uε(x, t)dµ(x)→
ˆ
X

max{u(x, t), 0}dµ(x) = ‖u+(·, t)‖L1 .

Let ψ ∈ C∞0 (0, T ). Then, on the one hand, as ε→ 0

(2.1)

ˆ T

0

‖uε(·, t)‖L1ψ′(t) dt→
ˆ T

0

‖u+(·, t)‖L1ψ′(t) dt,

by the dominated convergence theorem on [0, T ].
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On the other hand, since ϕε ∈ C1(R) and 0 ≤ ϕ′ε(s) ≤ 1 for all s ∈ R we have
that

d

dt
‖uε(·, t)‖L1 =

d

dt

ˆ
X

ϕ′ε(u(x, t)) dµ(x) =

ˆ
X

ϕε(u(x, t))ut(x, t) dµ(x),

so thatˆ T

0

‖uε(·, t)‖L1ψ′(t) dt = −
ˆ T

0

(ˆ
X

ϕ′ε(u(x, t))ut(x, t) dµ(x)

)
ψ(t) dt

and thus, as ε→ 0,

(2.2)

ˆ T

0

‖uε(·, t)‖L1ψ′(t) dt→ −
ˆ T

0

(ˆ
X

I{u(·,t)>0}(x)ut(x, t) dµ(x)

)
ψ(t) dt.

Here we have used that ϕ′ε(s)→ I(0,+∞)(s) and the dominated convergence theorem
twice, once on X for each t ∈ [0, T ] and once on [0, T ]. Finally, (2.1) and (2.2) imply
that ˆ T

0

‖u+(·, t)‖L1ψ′(t) dt = −
ˆ T

0

(ˆ
X

I{u(·,t)>0}(x)ut(x, t) dµ(x)

)
ψ(t) dt

and the assertion follows. �

Let us recall that u ∈ BT is a supersolution of (1.1) if it satisfies{
ut(x, t) ≥ Lu(x, t), in X × (0, T ),

u(x, 0) ≥ f(x), in X,

where

Lu(x, t) =

ˆ
X

J(x, y)[u(y, t)− u(x, t)] dµ(y).

We define subsolutions in a similar way, with ≤ instead of ≥.

Lemma 2.4. If u ∈ BT is a supersolution of (1.1), then

d

dt
‖u−(·, t)‖L1 ≤ 0.

Analogously, if u is a subsolution, we obtain d
dt‖u

+(·, t)‖L1 ≤ 0.

Proof. Since u is a supersolution of (1.1), Lemma 2.2 (see Remark 2.3) yields

d

dt
‖u−(·, t)‖L1 = −

ˆ
X

ut(x, t)I{u(·,t)<0}(x) dµ(x)

≤
ˆ
X

−Lu(x, t)I{u(·,t)<0}(x) dµ(x).

By the definition of L,

d

dt
‖u−(·, t)‖L1 ≤

ˆ
{x:u(x,t)<0}

(ˆ
X

J(x, y)[−u(y, t) + u(x, t)] dµ(y)

)
dµ(x)

=

ˆ
{x:u(x,t)<0}

ˆ
{y:u(y,t)<0}

J(x, y)[−u(y, t)] dµ(y) dµ(x)

+

ˆ
{x:u(x,t)<0}

ˆ
{y:u(y,t)≥0}

J(x, y)[−u(y, t)] dµ(y) dµ(x)

+

ˆ
{x:u(x,t)<0}

ˆ
{y:u(y,t)<0}

J(x, y)u(x, t) dµ(y) dµ(x)

+

ˆ
{x:u(x,t)<0}

ˆ
{y:u(y,t)≥0}

J(x, y)u(x, t) dµ(y) dµ(x)
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≤
ˆ
{x:u(x,t)<0}

ˆ
{y:u(y,t)<0}

J(x, y)[−u(y, t)] dµ(y) dµ(x)

+

ˆ
{x:u(x,t)<0}

ˆ
{y:u(y,t)<0}

J(x, y)u(x, t) dµ(y) dµ(x).

Since J is symmetric the last terms cancel out and we obtain d
dt‖u

−(·, t)‖L1 ≤ 0. �

Corollary 2.5 (Comparison principle). If u ∈ BT is a supersolution of (1.1) and
f ≥ 0, then u(·, t) ≥ 0 for every t.

Proof. From Lemma 2.4, the non-negative function g(t) := ‖u−(·, t)‖L1 satisfies
g′(t) ≤ 0 and g(0) = 0, because u(x, 0) ≥ 0 implies u−(·, 0) = 0. Then g(t) = 0 for
every t, and therefore u(x, t) ≥ 0 for almost every x, for every t. �

We shall use Lemma 2.4 and Corollary 2.5 to prove the following result concern-
ing the stability of problem (1.1).

Proposition 2.6 (Stability). Let f, g ∈ L1(X,µ) and let u and v denote the solu-
tions of problem (1.1) with initial conditions f and g, respectively. Then

(2.3) |||u− v|||1 := max
0≤t≤T

‖u(·, t)− v(·, t)‖L1 = ‖f − g‖L1 .

Moreover, if f, g ∈ L∞(X,µ),

(2.4) |||u− v|||∞ := max
0≤t≤T

‖u(·, t)− v(·, t)‖L∞ = ‖f − g‖L∞ .

Proof. In order to prove (2.3), let e = u− v and observe that

‖e(·, t)‖L1 = ‖e+(·, t)‖L1 + ‖e−(·, t)‖L1 .

Since et(x, t) = Le(x, t), e is a subsolution and a supersolution to (1.1), so that
Lemma 2.4 yields

d

dt
‖e(·, t)‖L1 =

d

dt
‖e+(·, t)‖L1 +

d

dt
‖e−(·, t)‖L1 ≤ 0.

Therefore ‖e(·, t)‖L1 ≤ ‖e(·, 0)‖L1 = ‖f − g‖L1 and (2.3) follows.
To prove (2.4) let ` = ‖f − g‖L∞ . Then w = u − v + ` satisfies wt = Lw and

w(0, t) ≥ 0, so that from Corollary 2.5 we have w(x, t) ≥ 0 for almost every x and
every t. Similarly, if we define w = `− (u− v) we obtain w(x, t) ≥ 0. Then

−` ≤ u(x, t)− v(x, t) ≤ `,

and (2.4) is proved. �

Remark 2.7. Notice that as a consequence of the above proposition we have that
if u ∈ BT is the solution of (1.1) with f ∈ L∞(X,µ), then u(·, t) ∈ L∞(X,µ) for
each t ∈ [0, T ]. Moreover, |||u|||∞ = ‖f‖L∞ .

Finally we shall study the asymptotic behavior of the solutions. Throughout the
rest of this section, we shall assume:

• (X, d) is connected,
• J(x, x) > 0 for every x and J(x, y) is continuous in x for each y.

We shall first consider the corresponding stationary problem:

(2.5) Lu(x) =

ˆ
X

J(x, y)[u(y)− u(x)] dµ(y) = 0, x ∈ X.

Lemma 2.8. Every solution in L1(X,µ) of the stationary problem is constant in X.
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Proof. We shall first prove that if u ∈ L1(X,µ) is a solution of (2.5), then u is a
continuous function. Indeed, for almost every x ∈ X we have that

u(x) =

ˆ
X

J(x, y)

I(x)
u(y) dµ(y),

where I(x) :=
´
X
J(x, y) dµ(y) > 0 due to (J2). Since J is continuous and X

is compact, there exists I0 > 0 such that I(x) ≥ I0 for all x ∈ X. Then the

function J̃(·, y) = J(.,y)
I(.) is continuous and thus uniformly continuous for each y,

which immediately implies that u is continuous.
Let M = max{u(x) : x ∈ X}, and consider the set

M = {x ∈ X : u(x) = M}.

Then the setM is nonempty and closed. Since the only subsets of a connected space
X which are both open and closed are X and the empty set, the result is proved
if we show that M is also open. Fix x0 ∈ M. Since J(x0, x0) > 0 and J(x0, ·) is
continuous, there exists r0 > 0 such that B(x0, r0) ⊆ supp J(x0, ·). Assume that
B(x0, r0) *M, so that there exists z ∈ B(x0, r0) with u(z) < M . Hence u(y) < M
for each y in some ball B centered in z and contained in supp J(x0, ·). Then

M = u(x0) =

ˆ
X\B

J̃(x0, y)u(y) dµ(y) +

ˆ
B

J̃(x0, y)u(y) dµ(y)

< M

ˆ
X

J̃(x0, y) dµ(y) = M,

which is absurd. Hence M is open, so that u(x) = M for every x ∈ X. �

Proposition 2.9 (Asymptotic behavior). If u ∈ BT is the solution of (1.1) for
f ∈ L2(X,µ), then there exists β > 0 such that∥∥∥∥u(·, t)−

 
X

f dµ

∥∥∥∥
L2

≤ e−βt
∥∥∥∥f −  

X

f dµ

∥∥∥∥
L2

,

where
ffl
X
f dµ := 1

µ(X)

´
X
f dµ denotes the average value of f .

The proof of this proposition is analogous to the one in [AVMRTM10] but we
decided to include it here for the sake of completeness.

Proof. From the linearity of the problem, we can assume
´
X
f dµ = 0. Proposi-

tion 2.1 implies that also
´
X
u dµ = 0 for all t > 0. From the results of [RBSG14],

since f ∈ L2(X,µ) we have that u(·, t) ∈ L2(X,µ) for each t. Being u a solution of
problem (1.1), we have that

1

2

d

dt
‖u(·, t)‖2L2 = 〈ut, u〉 = 〈Lu, u〉 =

〈Lu, u〉
‖u(·, t)‖2L2

‖u(·, t)‖2L2 ≤ −β ‖u(·, t)‖2L2 ,

where 〈·, ·〉 denotes the usual inner product in L2(X,µ), and

(2.6) β := inf
v∈L2

0

−〈Lv, v〉
‖v‖2L2

= inf
v∈L2

0, ‖v‖L2=1
〈−Lv, v〉 ,

with L2
0 = {v ∈ L2(X,µ) :

´
X
v dµ = 0}. Hence, if we denote

H(t) =
1

2
‖u(·, t)‖2L2 ,

we have proved that H ′(t) ≤ −2βH(t), and using Gronwall’s inequality we obtain

H(t) ≤ e−2βtH(0).
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Therefore, the assertion will be proved if we show that β > 0. Notice that

β = inf
v∈L2

0

1
2

´
X

´
X
J(x, y)[v(y)− v(x)]2dµ(y)dµ(x)

‖v‖2L2

,

hence β ≥ 0. To prove that β is strictly positive, consider the operator −L : L2
0 →

L2
0, and notice that it is self-adjoint, so that β belongs to its spectrum σ(−L) (see

[Bre83]). If β = 0, we have that 0 ∈ σ(−L), then −L is not invertible. But notice
that

−Lv(x) = Av(x)−Kv(x) = [A(I −A−1K)]v(x),

with

Av(x) = v(x)

ˆ
X

J(x, y) dµ(y), and Kv(x) =

ˆ
X

J(x, y)v(y) dµ(y),

so that A is invertible and K is compact (see [RBSG14, Prop.3.6]). Then I−A−1K
is not invertible, and Fredholm’s alternative yields the existence of a nontrivial
u ∈ L2

0 such that (I − A−1K)u = 0, or equivalently, Lu = 0. From Lemma 2.8 u
must be constant, and thus

´
X
u dµ 6= 0, which is a contradiction. �

Corollary 2.10. If u ∈ BT is the solution of (1.1) for a given f ∈ L1(X,µ), then

lim
t→∞

∥∥∥∥u(·, t)−
 
X

f dµ

∥∥∥∥
L1

= 0.

Proof. Let f ∈ L1(X), and as before, assume without loss of generality, that´
X
f dµ = 0. Given ε > 0, let g ∈ L2(X) be such that

´
X
g dµ = 0 and ‖f − g‖L1 ≤

ε/2. Let v be the solution of (1.1) with initial datum g, so that Proposition 2.9
yields

‖v(·, t)‖L2 ≤ e−βt‖g‖L2

for some β > 0. Then, by Proposition 2.6 and Hölder inequality

‖u(·, t)‖L1 ≤ ‖u(·, t)− v(·, t)‖L1 + ‖v(·, t)‖L1

≤ ‖f − g‖L1 + µ(X)1/2‖v(·, t)‖L2

≤ ε/2 + µ(X)1/2e−βt‖g‖L2 .

Choosing t∗ > 0 such that µ(X)1/2e−βt∗‖g‖L2 = ε/2 we have that

‖u(·, t)‖L1 ≤ ε,

for all t ≥ t∗ and the claim follows. �

Remark 2.11. The assumption of X being connected is used only in the proof of
Lemma 2.8 and can be weakened. Assuming X to be R-connected as in [RBSG14] is
sufficient for the assertion. A weaker assumption, stated in [GO07, Lemma 2.2] also
implies the assertion of Lemma 2.8. It reads as follows: given two points x, y ∈ X
there exists a finite sequence x1, x2, . . . , xk ∈ X such that

J(x, x1)J(x1, x2) . . . J(xk−1, xk)J(xk, y) > 0.

We kept the stronger assumption of X being connected to simplify the presentation.
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3. Main result

From now on we shall assume:

(J3) There exists a constant λ > 0 and r ∈ (0, 1] such that

(3.1) |J(x, y)− J(x, z)| ≤ λd(y, z)r, ∀x, y, z ∈ X.
Notice that this condition implies condition (J2) stated in page 4.

In order to state our main result, fix a decomposition {X1, . . . , XK} of X and a
set of representative points {x1, . . . , xk}. From now on

δ := max{diam(Xk) : k = 1, . . . ,K}
is called the size of the decomposition. Let J̄ be the kernel defined on X × X
which is constant on each Xi×Xk, taking the value of J in the representative pair
(xi, xk), i.e.

J̄(x, y) := J(xi, xk), if x ∈ Xi and y ∈ Xk.

Finally, given a discrete initial condition f = [f1, . . . , fK ] ∈ RK let U be the
extended solution associated to f and let F be the extension of f (see (1.3)). The
main error estimate reads as follows:

Theorem 3.1. Let u be the solution of (1.1) for a given f ∈ Lp(X,µ), for p = 1
or p =∞. Then

|||u− U |||p ≤ 4λµ(X)T‖f‖Lpδr + ‖f − F‖Lp ,

where λ and r denote the Lipschitz constants of J from (3.1).

To prove this theorem we need the following lemmas. We first show that the
function U also solves problem (1.1) with kernel J̄ , and initial datum F .

Lemma 3.2. The function U is the unique solution in BT of the problem

(3.2)

Ut(x, t) =

ˆ
X

J̄(x, y)[U(y, t)− U(x, t)]dµ(y), x ∈ X, t ∈ (0, T ),

U(x, 0) = F (x), x ∈ X.

Proof. Notice first that U ∈ C([0, T ];C(Xk)) ∩ C∞((0, T );C(Xk)) for every k, so
that U ∈ BT . In order to see that U solves (3.2), fix x ∈ X and t ∈ (0, T ). Then
there exists a unique i such that x ∈ Xi, so that

ˆ
X

J̄(x, y)[U(y, t)− U(x, t)]dµ(y) =

K∑
k=1

ˆ
Xk

J̄(x, y)[U(y, t)− U(x, t)]dµ(y)

=

K∑
k=1

J(xi, xk)[uk(t)− ui(t)]µ(Xk)

=
d

dt
ui(t) = Ut(x, t),

and U(x, 0) = ui(0) = F (x). Since J̄ satisfies (J1) and (J2) (see page 4), prob-
lem (3.2) has a unique solution and the assertion follows. �

The next lemma shows that

L̄u(x, t) :=

ˆ
X

J̄(x, y)[u(y, t)− u(x, t)] dµ(y),

approximates Lu in terms of the regularity of J .

Lemma 3.3. If u ∈ Lp(X,µ) for p = 1 or p =∞ then

‖Lu− L̄u‖Lp ≤ 4λµ(X)‖u‖Lpδr.
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Proof. Notice that if x ∈ Xi and y ∈ Xk, from the symmetry and the Lipschitz
condition of J we have

|J(x, y)− J(xi, xk)| ≤ |J(x, y)− J(xi, y)|+ |J(xi, y)− J(xi, xk)|
≤ λ(d(x, xi)

r + d(y, xk)r)

≤ 2λδr.

Therefore, for u ∈ L1(X,µ) and x ∈ X we have

∣∣Lu(x)− L̄u(x)
∣∣ ≤ K∑

k=1

ˆ
Xk

|J(x, y)− J̄(x, y)| |u(y)− u(x)| dµ(y)

≤
K∑
k=1

ˆ
Xk

|J(x, y)− J(xi, xk)| |u(y)− u(x)| dµ(y)

≤ 2λδr
K∑
k=1

ˆ
Xk

|u(y)− u(x)| dµ(y)

≤ 2λδr
ˆ
X

(|u(y)− u(x)|) dµ(y).(3.3)

Thus

‖Lu− L̄u‖L1 =

ˆ
X

∣∣Lu(x)− L̄u(x)
∣∣ dµ(x)

≤ 2λδr
ˆ
X

(ˆ
X

(|u(y)|+ |u(x)|) dµ(y)

)
dµ(x)

= 4λδrµ(X)‖u‖L1 .

Also, if u ∈ L∞(X,µ),

‖Lu− L̄u‖L∞ ≤ 2λδr
ˆ
X

(|u(y)|+ ‖u‖L∞) dµ(y) ≤ 4λδrµ(X)‖u‖L∞ ,

and the lemma is proved. �

The following result compares the solutions of problems with the same initial
condition, but with different kernels J and J̄ .

Lemma 3.4. Let f ∈ Lp(X,µ), for p = 1 or p =∞. Let V be the unique solution
in BT of (1.1) with kernel J̄ instead of J . Then, if u is the solution of (1.1), we
have that

|||u− V |||p ≤ 4λµ(X)T‖f‖Lpδr,

with λ and r as in Theorem 3.1.

Proof. Define w = u− V , and notice that w solves{
wt(x, t) = L̄w(x, t) +G(x, t), in X × (0, T ),

w(x, 0) = 0, in X.

where G(x, t) = Lu(x, t)− L̄u(x, t).
Let us first consider the case u ∈ BT . Let v be the unique solution in BT of{

vt(x, t) = L̄v(x, t) + |G(x, t)|, in X × (0, T ),

v(x, 0) = 0, in X.

It is worth mentioning that the exact same arguments used in [Act14] to prove
existence of solution of the homogeneous problem (1.1) allow us to prove that this
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inhomogeneous problem has a unique solution in BT . Then v − w satisfies{
(v − w)t(x, t) ≥ L̄(v − w)(x, t), in X × (0, T ),

(v − w)(x, 0) = 0, in X.

From Corollary 2.5 we have that v−w ≥ 0. Analogously we obtain v+w ≥ 0, so that
|w| ≤ v. Notice also that from the symmetry of J we have that

´
X
L̄v(x, t) dµ(x) =

0. Then, for each t we obtainˆ
X

|w(x, t)| dµ(x) ≤
ˆ
X

v(x, t) dµ(x)

=

ˆ
X

ˆ t

0

vt(x, s) ds dµ(x)

=

ˆ t

0

ˆ
X

|G(x, s)| dµ(x) ds

≤ t |||G|||1
≤ T4λµ(X) |||u|||1 δ

r,

where the last inequality stems from Lemma 3.3. Hence

|||u− V |||1 ≤ 4λµ(X)T |||u|||1 δ
r = 4λµ(X)T‖f‖L1δr,

due to Proposition 2.6.
Let us now consider the case f ∈ L∞(X,µ). From Remark 2.7 we have that

|||u|||∞ = ‖f‖L∞ < ∞. Define v̄(x, t) = kδrt − w(x, t), with k = 4λµ(X) |||u|||∞.
Notice that

v̄t(x, t) = kδr − wt(x, t) = kδr −G(x, t)− L̄w(x, t).

From Lemma 3.3, we have that kδr −G(x, t) ≥ 0. Then

v̄t(x, t) ≥ −L̄w(x, t) = L̄v̄(x, t)− L̄(kδrt) = L̄v̄(x, t).

Besides v̄(x, 0) = 0, so that Corollary 2.5 yields v̄(x, t) ≥ 0, and thus w(x, t) ≤ kδrt.
Analogously, if we define v(x, t) = kδrt+ w(x, t), we can prove that v(x, t) ≥ 0,

and then w(x, t) ≥ −kδrt. Then for almost every x ∈ X and for every t we have

|u(x, t)− V (x, t)| ≤ kδrt ≤ kTδr.

Therefore,

|||u− V |||∞ ≤ 4λµ(X) |||u|||∞ Tδr,

and the assertion follows from (2.4). �

Proof of Theorem 3.1. From Lemma 3.2, U is the unique solution in BT of prob-
lem (3.2). If V is defined as in Lemma 3.4, then

|||u− V |||1 ≤ 4λT‖f‖L1δr.

Besides, from Proposition 2.6 applied to J̄ and the initial conditions F and f we
have

|||U − V |||1 ≤ ‖f − F‖L1 .

Hence

|||u− U |||1 ≤ |||u− V |||1 + |||V − U |||1 ≤ 4λT‖f‖L1δr + ‖f − F‖L1 .

The case f ∈ L∞(X,µ) can be proved analogously. �
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4. A sharper error estimation for initial datum in L2

In Lemma 3.4 we proved that the error obtained approximating the solution u
of problem (1.1) by the solution of the same problem but with a piecewise constant
kernel J̄ , can be made as small as desired at any time provided the size of the
decomposition of X is small enough. More precisely, if f ∈ L1(X,µ) and u and V
denote the unique solutions in BT of (1.1) with kernels J and J̄ respectively, then
for each t > 0 we have

‖u(·, t)− V (·, t)‖L1 ≤ 4λt‖f‖L1δr,

where δ is the size of the decomposition of X, and λ and r denote the Lipschitz
constants of J from (3.1). As we mentioned in Section 1, every bounded metric
space with finite Assouad dimension, and in particular every bounded space of
homogeneous type (such as manifolds and classical fractals), can be decomposed
in such a way that δ is as small as desired. However, this bound is pessimistic for
large values of t. Notice that, independently of the decomposition, for any t > 0
we have

‖u(·, t)− V (·, t)‖L1 ≤
∥∥∥∥u(·, t)−

 
X

f dµ

∥∥∥∥
L1

+

∥∥∥∥V (·, t)−
 
X

f dµ

∥∥∥∥
L1

,

which tends to zero when t→∞, due to Corollary 2.10. For the case f ∈ L2(X,µ),
from Proposition 2.9 and Hölder inequality we can obtain a more precise bound:

‖u(·, t)− V (·, t)‖L1 ≤ 2µ(X)1/2
∥∥∥∥f −  

X

f dµ

∥∥∥∥
L2

e−β0t,

with β0 = min{β, β̄} > 0, where β and β̄ are defined as in (2.6) with L and L̄
respectively. On the other hand, using (3.3) and following the lines of the proof of
Lemma 3.4, we get

‖u(·, t)− V (·, t)‖L1 ≤
ˆ t

0

ˆ
X

|Lu(x, s)− L̄u(x, s)| dµ(x)ds

≤ 2λδr
ˆ t

0

ˆ
X

(ˆ
X

|u(y, s)− u(x, s)|dµ(y)

)
dµ(x)ds

≤ 4µ(X)λδr
ˆ t

0

ˆ
X

∣∣∣∣u(y, s)−
 
X

f dµ

∣∣∣∣ dµ(y)ds

= 4µ(X)λδr
ˆ t

0

∥∥∥∥u(·, s)−
 
X

f dµ

∥∥∥∥
L1

ds

≤ 4µ(X)3/2λδr
ˆ t

0

∥∥∥∥u(·, s)−
 
X

f dµ

∥∥∥∥
L2

ds

≤ 4µ(X)3/2λδr
∥∥∥∥f −  

X

f dµ

∥∥∥∥
L2

ˆ t

0

e−βs ds

≤
4µ(X)3/2λ

∥∥f − ffl
X
f dµ

∥∥
L2

β
δr.

Then, for the case f ∈ L2(X,µ) we obtain that there exists a constant C such that

‖u(·, t)− V (·, t)‖L1 ≤ C min{e−β0t, δr},

so that

‖u(·, t)− U(·, t)‖L1 ≤ C min{e−β0t, δr}+ ‖f − F‖L1 .

Therefore, except for the initial error ‖f − F‖L1 , for large times t the approxi-
mation is very good even with a poor decomposition of X, due to the asymptotic
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behavior of the solutions. In order to have good approximations for the initial phase
of small time t, we require that the decomposition has a small size δ.

5. Examples

The aim of this section is to give examples of explicit spaces of homogeneous
type (X, d, µ) where Theorem 3.1 can be applied in order to obtain numerical
approximations of the solution of problem (1.1). As we already mentioned, every
bounded space of homogeneous type can be decomposed in the required form due to
the construction provided by M. Christ in [Chr90]. Nevertheless, in the case of the
classical fractals it is more suitable to work with another decomposition of the space
that exploit their self-similarity property. We consider the usual approximation
induced by the associated iterated function system (IFS); see [Hut81] or [Fal97].

Given a metric space (Y, d) we shall consider a finite set Φ = {φi : Y → Y, i =
1, 2, . . . ,H} of contractive similitudes with the same contraction rate α. This means
that each φi satisfies

d(φi(x), φi(y)) = αd(x, y)

for every x, y ∈ Y and some 0 < α < 1. Also we shall assume that the IFS Φ
satisfies the open set condition, which means that there exists a non-empty open
set U ⊂ Y such that

H⋃
i=1

φi(U) ⊆ U,

and φi(U) ∩ φj(U) = ∅ if i 6= j. For n ∈ N, let In = {1, 2, . . . ,H}n be the set
of “words” of length n. Given i = (i1, i2, . . . , in) ∈ In, we denote with φni the
composition φin ◦ φin−1

◦ · · · ◦ φi2 ◦ φi1 . Then for any subset E of X we write

φni (E) =
(
φin ◦ φin−1 ◦ · · · ◦ φi2 ◦ φi1

)
(E).

It is well known that if E is a compact set and Xn =
⋃

i∈In φ
n
i (E), then the

sequence of sets {Xn}n converges is the sense of the Hausdorff distance to a non-
empty compact set X, which is called the attractor of the system Φ since it is the
unique satisfying

X =

H⋃
i=1

φi(X).

It is also called the fractal induced by the IFS Φ, and moreover, if E satisfies
φi(E) ⊆ E for every i, then X =

⋂∞
n=1X

n.
There exists also a Borel probability measure µ supported on the attractor X.

This measure is called invariant or self-affine since is the unique measure satisfying

µ(A) =
1

H

H∑
i=1

µ(φ−1i (A))

for every Borel set A. Moreover, the results in [Mos97] show that (X, d, µ) is an
Ahlfors regular space of dimension s = − logαH.

In what follows we will present a couple of simulations for different fractals.

Among other aspects, these numerical approximations allow us to visualize the
lack of regularizing effect of the non-local diffusion. We can see that, even though
the solution tries to become continuous, the jump from the initial condition is
present at all times.
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5.1. Sierpinski gasket. Let X be the Sierpinski Gasket in R2, equipped with
the usual distance d and the normalized s-dimensional Hausdorff measure µ, with
s = log 3/ log 2. This fractal X is induced by the IFS Φ = {φ1, φ2, φ3} given
by [Fal97]

φ1(x) =
1

2
x, φ2(x) =

1

2
x+

(
1/2
0

)
, φ3(x) =

1

2
x+

(
1/4√
3/4

)
.

Given a natural number n, we define

Φn = {φ : φ = φi1 ◦ φi2 ◦ · · · ◦ φin : ij ∈ {1, 2, 3}},

and number the functions of Φn as φnk , k ∈ I3n = {1, 2, . . . , 3n}. Then, on the

one hand, X =
⋂∞
n=1

⋃3n

k=1 φ
n
k (S), with S the triangle of vertices (0, 0), (1, 0),

(1/2,
√

3/2). On the other hand, for a fixed n we define Xk = φnk (X), and it turns
out that

X =

3n⋃
k=1

Xk.

The invariant measure satisfies that µ(Xk) = 1/3n, and except for a set of µ-
measure zero, this sets Xk are pairwise disjoint, so that {Xk}k∈I3n is an appropriate
decomposition of X. In order to apply Theorem 3.1 we only need to identify a point
in each one of these components. We choose the bottom left vertex of each Xk, i.e.,
xk = φnk (0, 0), k ∈ I3n .

We consider equation (1.1) with J(x, y) = 100e−100|x−y|
2

and f(x) = I{x1<x2}(x).
The solutions at time at t = 0, 0.2, 0.5, 1, 2, 4 for n = 7 are shown in Figure 1.
The time discretization was done with the fourth order Runge-Kutta scheme using
∆t = 0.05.

5.2. Sierpinski carpet. In this subsection we consider the Sierpinski carpet, which
is induced by IFS Φ = {φ1, φ2, . . . , φ8} given by

φ1(x) =
1

3
x, φ2(x) =

1

3
x+

(
1/3
0

)
, φ3(x) =

1

3
x+

(
2/3
0

)
,

φ4(x) =
1

3
x+

(
0

1/3

)
, φ5(x) =

1

3
x+

(
2/3
1/3

)
,

φ6(x) =
1

3
x+

(
0

2/3

)
, φ7(x) =

1

3
x+

(
1/3
2/3

)
, φ8(x) =

1

3
x+

(
2/3
2/3

)
.

As before, given a natural number n, we define

Φn = {φ : φ = φi1 ◦ φi2 ◦ · · · ◦ φin : ij ∈ {1, 2, . . . , 8}},

and number the functions of Φn as φnk , k ∈ I8n = {1, 2, . . . , 8n}. Then, on the

one hand, X =
⋂∞
n=1

⋃8n

k=1 φ
n
k (S), with S = [0, 1]2 the unit square. On the other

hand, for a fixed n, X =
⋃Xn

k=1Xk if Xk = φnk (X). Also, the invariant measure
satisfies that µ(Xk) = 1/8n, and except for a set of µ-measure zero, this sets Xk

are pairwise disjoint. In order to apply Theorem 3.1 we choose as a representative
of each component Xk the bottom left vertex, i.e., xk = φnk (0, 0), k ∈ I8n .

We consider equation (1.1) with J(x, y) = 100e−100|x−y|
2

and f(x) = I{x2>x1/2}(x).
The solutions at time at t = 0, 0.2, 0.5, 1, 2, 4 for n = 4 are shown in Figure 2.
The time discretization was done with the fourth order Runge-Kutta scheme using
∆t = 0.05.

The code was implemented in MATLAB and the graphics were produced with
PARAVIEW.
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Figure 1. Nonlocal diffusion on the Sierpinski gasket. So-

lution with J(x, y) = 100e−100|x−y|
2

and f(x) = I{x1<x2}(x).
Snapshot of solution, from left to right and top to bottom, at
t = 0, 0.2, 0.5, 1, 2, 4. The space X is decomposed into 37 compo-
nents Xk. Each set Xk = φk(X) was drawn as φk(S) with S the

triangle of vertices (0, 0), (1, 0), (1/2,
√

3/2). The time discretiza-
tion was done with the fourth order Runge-Kutta scheme using
∆t = 0.05. The lack of regularizing effect of the non-local diffusion
is apparent. Even though the solution tries to become continuous,
the jump from the initial condition is present at all times.

6. Conclusions

We have presented a numerical method to approximate the solution of an evolu-
tionary nonlocal diffusion problem. The theory is valid in a general setting of metric
measure spaces, which include fractals, manifolds and domains of Rn as particular
cases. We proved error estimates in L∞([0, T ];Lp(X,µ)) for p = 1, 2 whenever the
initial datum f ∈ Lp(X,µ). If the initial datum belongs to L2(X,µ) the estimate
for the error in L∞([0, T ];L1(X)) is improved and made independent of T .

Besides, we have studied some qualitative properties of the discrete and exact
solutions, obtaining stability estimates, proving comparison principles and deter-
mining the asymptotic behavior as t → ∞. This was done in a unified framework
after noticing that the discrete solution is also the exact solution of a nonlocal
diffusion problem, with piecewise constant kernel and initial datum.

We have implemented the numerical method in MATLAB and presented at the
end some simulations on the Sierpinski gasket and the Sierpinski carpet, with an
exponential kernel. This illustrate on the behavior of the solutions of the nonlocal
diffusion problem on fractals, and sets the basis for the study of other differential
equations on fractals.

The MATLAB code and some animations can be found at
http://imal.santafe-conicet.gov.ar/pmorin/Papers/42/MATLAB

Acknowledgements. This work was partially supported by CONICET through
grant PIP 112-2011-0100742, by Universidad Nacional del Litoral through grants

http://imal.santafe-conicet.gov.ar/pmorin/Papers/42/MATLAB
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Figure 2. Nonlocal diffusion on the Sierpinski carpet. So-

lution with J(x, y) = 100e−100|x−y|
2

and f(x) = I{x2>x1/2}(x).
Snapshot of solution, from left to right and top to bottom, at
t = 0, 0.5, 1, 2, 4, 8. The space X is decomposed into 84 compo-
nents Xk. Each set Xk = φk(X) was drawn as φk(S) with S the
unit square. The time discretization was done with the fourth
order Runge-Kutta scheme using ∆t = 0.05.
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son, Paris, 1983, Théorie et applications. [Theory and applications]. MR 697382
(85a:46001)

[CER09] Carmen Cortazar, Manuel Elgueta, and Julio D. Rossi, Nonlocal diffusion problems

that approximate the heat equation with Dirichlet boundary conditions, Israel J.
Math. 170 (2009), 53–60. MR 2506317 (2010e:35197)

[Chr90] Michael Christ, A T (b) theorem with remarks on analytic capacity and the Cauchy

integral, Colloq. Math. 60/61 (1990), no. 2, 601–628. MR 1096400 (92k:42020)

http://bibliotecavirtual.unl.edu.ar:8180/tesis/handle/1/552


NONLOCAL DIFFUSIONS ON FRACTALS 17

[CW71] Ronald R. Coifman and Guido Weiss, Analyse harmonique non-commutative sur
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