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We present a Newton type algorithm to find parametric surfaces of prescribed mean 
curvature with a fixed given boundary. In particular, it applies to the problem of minimal 
surfaces. The algorithm relies on some global regularity of the spaces where it is posed, 
which is naturally fitted for discretization with isogeometric type of spaces. We introduce 
a discretization of the continuous algorithm and present a simple implementation using 
the recently released isogeometric software library igatools. Finally, we show several 
numerical experiments which highlight the convergence properties of the scheme.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

The problem of minimal surfaces is one of the most celebrated in the calculus of variations. The question is to find, 
among all surfaces with a prescribed boundary (a closed curve), one that is of minimal area. One can realize experimentally 
such surfaces by dipping a wire into soapy water [1,2]. The mathematics of the problem has been extensively studied, 
see for example [3,4]. Minimal surfaces are characterized by having zero mean curvature. This last characterization allows 
us to generalize the problem to that of finding surfaces with a given prescribed (constant) mean curvature. The latter is 
an important problem appearing in relativity theory as well as in models for hanging drops, soap films and the limiting 
behavior of phase transition interfaces in the Van der Waals–Cahn–Hilliard theory [5,6].

As minimal surfaces are smooth (provided their boundary is), using spaces of high regularity in the numerical schemes 
used to compute them should be very suitable. One class of such spaces are the isogeometric spaces, which were originally 
introduced in [7], inspired by the desire to unify the fields of computer aided geometrical design (CAGD) and the finite 
element method (FEM). The mainly advertised feature of an isogeometric space has been the ability to describe exactly 
CAGD type geometries. But in addition to exact representation of CAGD geometries the use of B-spline functions allows 
global smoothness beyond the classical C0 continuity of standard finite elements: this permits the design of novel numerical 
schemes that would be extremely difficult to obtain with standard finite elements. For example, we can work with surfaces 
which have a continuous normal.

The goal of this work is to present a novel fixed point method of Newton type to approximate minimal surfaces and 
surfaces of prescribed constant mean curvature. We first introduce an idealized version at the continuous level and then 
discretize it using isogeometric spaces. Finally this discrete scheme is implemented using the isogeometric software library
igatools [8].
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We demonstrate numerically the convergence and stability of the method. The use of high regularity spaces allows us to 
determine convergence in terms of curvature even when the exact solution is not known.

It is worth recalling that a numerical scheme based on (linear) finite elements was proposed for the Plateau problem in 
the parametric case by Dziuk and Hutchinson [9]. They transform the Plateau problem into that of finding a parametrization 
of the unit circle onto the prescribed boundary in such a way that the image of the resulting harmonic extension is a 
minimal surface. They use the fact that the minimal surface is stationary for the Dirichlet energy among all harmonic maps 
that span the boundary γ . Other algorithms based on finite differences and C0 finite elements have been proposed and 
studied (see [9] and the references therein). Their intricate approach was necessary to circumvent the lack of regularity 
of the involved spaces, restricted to surfaces that are homeomorphic to a disc. Recently, an algorithm using high-order 
polynomials has been proposed by Tråsdal and Rønquist [10]. Extensions for the case of prescribed mean curvatures appear 
in [5,6].

Our approach is very simple, in the sense that we solve the original problem as it is stated without reformulation. This 
is so as it relies on the fact that the iterates are smooth surfaces. Moreover, our method is not restricted to surfaces that 
are homeomorphic to a disc, it only requires the boundary to be the one of a given surface.

2. Preliminaries (differential geometry)

In this section we introduce some notation while recalling some concepts from differential geometry necessary to state 
the minimal surface problem.

2.1. Regular surfaces

For the sake of understanding and to avoid technicalities which do not change the essential content, we will restrict to 
surfaces that can be parametrized by a single patch. The method applies to more general surfaces (see Section 4.3).

A Cm regular surface � (m ≥ 1) is a subset of R3 such that there exists a continuous map (homeomorphic to its image) 
X : �̄ → R

3 with � an open subset of R2, satisfying that: X ∈ Cm(�; R3), � = X(�) and G(P ) := (D X T D X)(P ) is invertible 
for every P ∈ �, where D X(P ) is the derivative of X at P (this is called the regularity condition). Let Rm(�) be the set 
of all the mappings X that define a Cm regular surface, which from now on will be referred to as parametrizations of that 
surface. We will refer to Cm regular surfaces simply as regular surfaces, and keep m ≥ 1 fixed throughout the rest of this 
article.

At each point p on a regular surface � both the tangent plane T p(�) and the normal n are well defined (i.e. independent 
of the parametrization1). In this context � is always orientable. In particular T p(�) is the image of R2 by D X(P ), and the 
normal space is the orthogonal complement of T p(�).

For a regular surface �, its area element measure dp is well defined. Its surface area in terms of a given parametrization 
X : � →R

2 is

Area(�) = J (X) =
∫
�

dp =
∫
�

√
g dP , (1)

where g = det G = det D X T D X .

2.2. Surfaces of minimal area

The problem can be stated in a geometrical manner as follows. Let �0 be a regular surface and γ = ∂�0. Let S(γ ) =
{� regular surface with ∂� = γ }. The surface of minimal area is a solution �∗ to the following problem:

�∗ = arg min
�∈S(γ )

Area(�). (2)

In terms of parametrizations, with a slight abuse of notation, it can be equivalently written as follows. Given X0 ∈ Rm(�), 
let γ = X0|∂� and S(γ ) = {X ∈Rm(�) : X |∂� = γ },

Find X∗ in S(γ ) such that X∗ = arg min
X∈S(γ )

J (X). (3)

To approach problem (3) with the techniques of the calculus of variations we recall some concepts of the calculus on 
surfaces.

1 Up to a sign for the normal.
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2.3. Calculus on surfaces

Let f : � → R
3 be a vector field. We say that f is smooth (Ck) if f ◦ X : � ⊂ R

2 → R
3 is smooth (Ck) in the sense of 

Euclidean calculus for any (smooth Cm) parametrization X of � (k ≤ m). In this case the tangential derivative of f at p is 
defined as the linear operator D� f (p) : T p(�) →R

3, given by

D� f (p)[v] = d

dt
( f ◦ α)(t)|t=0, (4)

where v is a given element of T p(�), and α : (−ε, ε) → �, any smooth curve on � with α(0) = p and α′(0) = v . Given a 
field f on a surface � and a parametrization X , we define F = f ◦ X the pull-back of f . Choosing an orthonormal basis of 
R

3, the 3 × 3 matrix

(D F G−1 D X T )(P ) (5)

is the representation of the operator D� f �(p) : R3 → R
3, where p = X(P ) and �(p) = (I − n ⊗ n) is the projection to the 

tangent plane T p(�) with matrix representation

(D XG−1 D X T )(P ). (6)

The surface divergence of the vector field is defined as

div� f (p) =
∑

i=1,2

D� f (p)[ei] · ei (7)

with {e1, e2} any orthonormal basis of T p(�).

Remark 2.1 (Push-forward and pull-back). Unless stated otherwise in this work we use the following convention. Lowercase 
letters represent fields defined on a surface � and the corresponding uppercase of the letter refers to its pull-back on �
through a given parametrization X . For example, if u is a field (scalar, vector or tensor-valued) on the surface �, we define 
its pull-back by U = u ◦ X . Similarly if U is defined on �, its push-forward is u = U ◦ X−1.

2.4. Curvatures

A regular surface has a smooth unit normal vector field n : � → R
3. Its tangential derivative D�n(p) : T p(�) → R

3

encodes the information about the surface curvature. As a matter of fact D�n(p)[T p(�)] ⊂ T p(�) and when restricted to 
this tangent plane is a symmetric linear transformation. Indeed, the principal curvatures κ1 and κ2 and principal directions 
are the eigenvalues and the eigenvectors of D�n. The mean curvature H and the Gaussian curvature K are

H = κ1 + κ2 = tr(D�n), K = κ1κ2 = det(D�n).

Notice also that D�n(p)T :R3 → T p(�).

3. The problem

In this section we present the problem object of the present work. Two results about the variational derivatives are 
presented in Lemmas 3.1 and 4.1. The proofs are omitted as they are standard and can be found for example in [3,11,12]. 
Let � be an open and connected set of R2 and recall the notation from problem (3). There is a given X0 ∈ Rm(�), where 
γ = X0|∂� is a Jordan curve and S(γ ) = {X ∈Rm(�) : X |∂� = γ }.

3.1. The Plateau problem

Finding a surface of minimal area in problem (3) can be very difficult, a simpler associated problem is to find the critical 
points of J from (1). This is to say find X ∈ S(γ ) such that J ′(X) = 0 which is known as the Plateau problem. Here the 
prime denotes the variational derivative. To define J ′ we consider the space of vector increments

V = {V ∈ Cm(�;R3) : V |∂� = 0}, with norm ‖V ‖V = max|α|≤m
max
x∈�

|Dα V (P )|,

and let J ′ be the only bounded linear functional from V →R such that

J (X + U ) = J (X) + J ′(X)[U ] + o(‖U‖V ),

for all U ∈V with ‖U‖V sufficiently small. The following lemma is well known, and proved in the appendix for the sake of 
completeness.
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Lemma 3.1 (First variation of J ). Given X ∈Rm(�) and � = X(�), if J (X) is the area of �, then

J ′(X)[U ] =
∫
�

div�u dp, ∀U ∈V,

where u = U ◦ X−1 (U = u ◦ X) and div� is the surface divergence defined in the previous section. If X is piecewise C2 we have the 
alternative expression

J ′(X)[U ] =
∫
�

H (n · u)dp, (8)

where H is the mean curvature function of �, and n the unit normal vector field.

It is thus easy to see that every surface of minimal area is a solution to the Plateau problem, which is defined as 
the problem of finding a surface with a given boundary and H ≡ 0. Such surfaces are called minimal surfaces. In terms 
of parametrizations, this is equivalent to finding X ∈ S(γ ) with H = 0. With a slight abuse of notation we will call such 
parametrizations X minimal surfaces.

Remark 3.2 (Existence and uniqueness). The minimal surface problem has been one the most celebrated problems in the 
calculus of variations and there are thousands of works on the subject. The literature has been so fruitful mainly due to 
the lack of a simple result that would cover most cases. A quick look at [3, Chapter 4] would provide several results on 
the matter. Even for very simple setups, we can have a singular behavior, such as existence of multiple minimal surfaces. 
For example if the boundary consists of two circles, not too far apart, there are two different solutions (the catenoid and 
two separated discs). In the context of this paper we assume that we are approximating a problem for which there exists 
a minimal surface that has the same boundary and topology of the initial surface we provide, and that it is close to this 
initial surface.

3.2. Prescribed curvature problem

We have seen that minimizing the area functional led to the problem of finding zeros of another functional F , which 
are surfaces of vanishing mean curvature. The functional F can be simply generalized so that its zeros are surfaces of a 
given prescribed mean curvature. This problem makes sense on its own even if the solutions are not minimizers of some 
functional. More precisely, we now define the functional F whose zeros are surfaces of prescribed constant mean curvature; 
the minimal surface problem is thus a particular case.

Definition 1 (Prescribed curvature functional). Let C be a given constant and define the prescribed curvature functional F :
S(γ ) → V ′ by

F (X)[U ] =
∫
�

(H − C) (n · u) for all U ∈V, X ∈ S(γ ),

where � = X(�), u = U ◦ X−1, H is the mean curvature of � and n the normal vector field of �.

Our goal is to find a zero of the functional F in the following sense:

Definition 2 (Prescribed curvature problem). Let F be the functional from Definition 1, then the prescribed mean curvature 
problem reads: Find X∗ ∈ S(γ ) such that

F (X∗)[U ] :=
∫
�

(H − C)(u · n) = 0 for all U ∈V . (9)

4. Fixed point algorithm

We want to define a Newton-type algorithm to approximate the solutions of the prescribed mean curvature problem, 
i.e., find the zeros of F from Definition 1. With this goal in mind, we need to find the derivative of F .
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Lemma 4.1 (Derivative of F ). Given X ∈Rm(�) and � = X(�),

F ′(X)[U ][V ] =
∫
�

D�uT n · D� v T n + div�u div� v − D�u � · � D� v T

+ C

∫
�

u · D� v T n − (u · n)div� v, for all U , V ∈V, (10)

where n is the normal to �.

We postpone the proof of this lemma to the appendix.

4.1. Newton method

A first attempt to find a zero of F (X) is a direct application of Newton method on problem (9), namely, starting with 
the given X0 let k = 0 and

(1) Let δk ∈ V be the solution of F ′(Xk)[δk] = −F (Xk)

(2) Let Xk+1 = Xk + δk .
(3) Increase k and go to (1).

This method does not work in general regardless of how close X0 is to X∗ . The reason is that F ′(X) is not invertible in 
general, especially when X is very close to a minimal surface. An example illustrating this fact is presented in the appendix 
(see Proposition A.6). The reason behind the non-invertibility of F ′(X) is that we consider all movements of the surface, 
including tangential ones. The latter do not change the surface with infinitesimal steps.

In the next section we propose a modification which only takes into account normal perturbations.

4.2. Modified Newton method

We start this section observing that problem (9) is equivalent to the following:

Find X∗ ∈ S(γ ) such that F (X∗)[
N∗] = 0 ∀
 ∈ V, (11)

where N∗ = N X∗ is the pull-back of the normal n∗ to the surface X∗(�), and V is the space of scalar increments defined 
by

V = {� ∈ Cm(�;R) : �|∂� = 0}.
Problem (11) is not yet suitable to be solved by a Newton method, but we can still use a Taylor formula approach.
Suppose we have a surface X ∈ S(γ ) with normal N and that it is so close to X∗ that X∗ = X + �N for some � ∈ V . 

Then, problem (11) can be written as:

Find � ∈ V such that F (X + �N)[
N+] = 0 ∀
 ∈ V,

where N = N X and N+ = N X+�N .
We now use Taylor’s formula to approximate this problem by the following:

Find � ∈ V such that F (X)[
N+] + F ′(X)[�N][
N+] = 0 ∀
 ∈ V, (12)

where we still denote N+ = N X+�N .
This problem, in turn, can be approximated by the more explicit, linear problem

Find � ∈ V such that F ′(X)[�N][
N] = −F (X)[
N] ∀
 ∈ V,

which is obtained from (12), replacing N+ by N = N X .
We use this equation to build an iterative scheme at the continuous level.

Algorithm 1 (Continuous scheme). Let P be a projection from Cm−1 to Cm . Let X0 ∈ Rm(�) be some initial surface defining 
S(γ ). We then set k = 0 and define a sequence of surfaces in S(γ ) as follows:

(1) Find �k ∈ V such that F ′(Xk)[�k Nk][
Nk] = −F (Xk)[
Nk], ∀
 ∈ V , where Nk denotes the normal to �k = Xk(�).
(2) Let Xk+1 = Xk + P (�k Nk).
(3) Increase k and go to step (1).
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In the definition of Algorithm 1, it is not necessary to restrict to one specific projection. In our simulations we have used 
an L2 projection. Also for the implementation of this algorithm, it is worth observing the simplified form that F ′(X)[·][·]
from (10) takes when considering only normal perturbations.

Proposition 4.2 (Derivative for normal perturbations). If X ∈Rm(�) with m ≥ 2, then

F ′(X)[�N][
N] =
∫
�

∇�φ · ∇�ψ +
∫
�

(2K − C H)φψ, for all �,
 ∈ V, (13)

where φ and ψ are the push-forward of � and 
 , respectively.

The proof of this proposition can be found in the appendix.

Remark 4.3. It is worth mentioning that one could also compute surfaces of prescribed mean curvature by minimizing the 
functional 

∫
(H − C)2, instead of finding zeros of the functional F from Definition 1. The method developed in this article 

aims at finding zeros of functionals with a Newton-type algorithm, in order to obtain quadratic convergence. Solving such a 
minimization problem with these techniques would require computing second order derivatives of the functional. A descent 
algorithm would allow us to start from a not so close initial surface, but would lead to linear convergence. It seems that a 
combination of both techniques should be the best choice; we will work on this idea in a forthcoming article.

4.3. A more general setting

The method generalizes naturally to surfaces that cannot be parametrized by a single patch and to dimension greater 
than three. Let the initial regular surface �0 in Rn+1 be given with boundary γ = ∂�0. The method recursively generates 
from the surface �k a new surface �k+1 as follows. Let

Sk(γ ) = {X : �k →R
n+1 : X |γ = idk

and X is a Cm diffeomorphism onto X(�k)}
Vk = {� : �k →R : �|γ = 0 and smooth}

F k(X)[V ] :=
∫

X(�k)

(H − C)v, ∀V ∈ Vk
0,

where H is the mean curvature of X(�k),

(14)

then we let Xk = idk + P (�k Nk) where �k is the solution of

(F k)′(idk)[�k Nk][
Nk] = −(F k)(idk)[
Nk], ∀
 ∈ Vk,

and Pk is a projection onto Cm(�k). Then �k+1 = Xk(�k).

Remark 4.4 (Convergence). In the following section we propose a discrete scheme for Algorithm 1 based on B-splines and 
present numerical evidence (through its implementation in a variety of examples) supporting the convergence properties of 
the method. The question on the mathematical assumptions that would imply the convergence of the method is an open 
problem that we are investigating at the moment.

5. Discretization

We want to adapt Algorithm 1 to a discrete setting using spaces of high regularity, namely isogeometric spaces. These are 
spaces constructed from tensor product splines. In this section we briefly describe them and present the discrete algorithm.

5.1. B-splines and NURBS

5.1.1. Univariate B-spline
Given a non-negative number p, a spline of degree p on the interval [a, b] is a real valued piecewise polynomial function 

of degree at most p on each subinterval of [a, b] determined by the partition a = ζ1 < · · · < ζm = b. The ζi ’s are called 
the knots and they form the knot vector ζ = (ζ1, . . . , ζm). At each knot, the spline function is allowed to have a regularity 
that ranges from discontinuous (C−1) to C p−1, this is usually indicated using the so called regularity vector α = (α1, . . . , αm)

where αi ∈ Z and −1 ≤ αi ≤ p −1. It is sometimes convenient to encode both knot and regularity vectors into a single vector 
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Fig. 1. One dimensional B-spline basis functions of degree 3 for a maximum regularity knot vector. As can be seen, all the functions are non-negative; they 
span over four knot intervals (small support); on each interval only four functions have non-zero values; and they form a partition of unity on the interval 
[ζ0, ζ3].

of repeated knots ξ = (ζ1, . . . , ζ1︸ ︷︷ ︸
r1 times

, ζ2, . . . , ζ2︸ ︷︷ ︸
r2 times

, . . . , ζm, . . . , ζm︸ ︷︷ ︸
rm times

), where ri = p − αi , and r = (r1, . . . , rm) is called the multiplicity 

vector. When the multiplicity of the first and last knots is p + 1 we call ξ an open knot vector.
We define S p

ξ to be the space of spline functions of degree p subordinated to the knot vector with repetition ξ . It is a 
well known result that the dimension of this space is n = ∑m

i=1 ri − p − 1. The classical Cox–de Boor recursive algorithm 
[13] allows to construct a basis for S p

ξ , known as the B-spline basis. We denote these basis functions by Bi (see Fig. 1). 
Some important properties of B-spline basis functions are:

1. Non-negativity: each Bi(x) ≥ 0 for all x ∈ [a, b].
2. Small support: the support of Bi is contained in [ξi, ξi+p+1), and on each interval [ζi, ζi+1) (with i = 1, . . . , m − 1), only 

p + 1 basis functions have non-zero values.
3. Partition of unity: the set of basis functions {B1, . . . , Bn} satisfies that 

∑n
i=1 Bi(x) = 1, for all x ∈ [a, b] if ξ is an open 

knot vector.

5.1.2. Bivariate B-splines
The univariate spline spaces can be used to generate multidimensional spline spaces through tensor products. For this 

work we just consider the bivariate case. More precisely, given d = 2 we consider the spline spaces S pi
ξ i

([ai, bi]) for i = 1, 2
and define the bivariate spline space S p1,p2

ξ1,ξ2
(�̂) = S p1

ξ1
([a1, b1]) ⊗ S p2

ξ2
([a2, b2]), where �̂ is the rectangle [a1, b1] ×[a2, b2]. In 

this case the bivariate B-Spline basis functions are

Bi1,i2(x1, x2) = B1
i1
(x1)B2

i2
(x2) (15)

with Bi
j ∈ S pi

ξ i
, j = 1, . . . , ni being the B-spline basis functions of the univariate spaces. The dimension of the space is 

n = n1 × n2.

5.1.3. Vector valued B-splines
Given an integer s we define the vector valued spline space S s to be the set of all vector valued functions φ̂ : �̂ → R

s

such that φ̂ · ei ∈ S
pi
ξ i

.

5.2. Isogeometric spaces

The isogeometric spaces are spaces constructed by providing:

1. A reference space. This is a tensor product spline or NURBS space with a rectangle as domain.
2. A deformation. Provides a smooth deformation or mapping F : �̂ → R

s (with smooth inverse). � = F (�̂).
3. A transformation type. This is a rule that specifies how to use the deformation to transform the functions in the 

reference space into the ones in the physical space. Some example besides direct composition are divergence and curl 
preserving transformations (cf. Table 1).

5.3. Discrete algorithm

Recall that m is a parameter for the regularity of the spaces that we consider given and fixed. The discrete algorithm is 
obtained by replacing the set S(γ ) appearing in Algorithm 1. More precisely, let Sh and Sh be the scalar-valued and vector-
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Table 1
Examples of different transformation types to obtain a physical discrete space V from a reference spline or NURBS space V̂ and a mapping F . The table 
shows the transformation name given in the library and the formula that defines its push-forward operator.

h_grad h_curl h_div l_2

φ = φ̂ ◦ F −1 u = D F −T (û ◦ F −1) v = D F

det D F
(v̂ ◦ F −1) � = �̂ ◦ F −1

det D F

Table 2
The high regularity of the isogeometric spaces allows us to compute the curvature of the approximation directly, this in turn gives means to consider the 
following norms to measure the approximation quality to the minimal surface, even if we don’t know the exact solution.

Mean error L1 error L2 error L∞ error∣∣∣ 1
|�|

∫
�

H − C
∣∣∣ 1

|�|
∫
�

|H − C |
(

1
|�|

∫
�

|H − C |2
)1/2 ‖H − C‖L∞(�)

valued bi-variate spline spaces of degree p = m + 1 and maximum regularity respectively. The subscript h is a parameter 
indicating the knot spacing, also called mesh size. Now we can state the discrete scheme.

Algorithm 2 (Discrete scheme). Let Ph be a chosen projection from Cm−1 to Sh . Let X0 ∈ Rm(�) be a given initial surface 
fixing the boundary and thus defining the admissible set S(γ ). Define:

• X0
h := Ph(X0)

• Sh(γ ) := {X ∈ Sh ∩Rm(�) : (X − X0
h )|∂� = 0}

• Vh := {� ∈ Sh : �|∂� = 0}

and generate for k = 0, 1, 2, . . . the sequence of surfaces in Sh(γ ) recursively, as follows:

1. Find �k ∈ Vh such that

F ′(Xk
h)[�k Nk][
Nk] = −F (Xk

h)[
Nk] ∀
 ∈ Vh

2. Let Xk+1
h := Xk

h + Ph(�k Nk).

6. Examples

In this section we present a number of numerical simulations using the discrete scheme described in Algorithm 2. The 
purpose is to show experimentally the stability and convergence properties of the method under a variety of situations.

To run the simulations below, Algorithm 2 was implemented using the software library igatools [8]. This open source 
C++ library allows, among other things, the use of vector-valued and periodic isogeometric spaces. To solve the symmetric 
linear system we employed a preconditioned conjugate gradient algorithm. The simulations were run on a desktop computer 
with 4 cores.

The discrete spaces are tensor product splines with maximum regularity for a chosen degree p, namely they are Cm with 
m = p − 1. Given the possibility of using a high regularity for the solution spaces, it is simple to compute the curvature of 
the approximation directly—which is not the case if we use the usual (C0) finite element spaces. This fact can be exploited, 
among other things, to have a good measure of the approximation error to the exact solution even if the latter is not 
known. More precisely, as a minimal surface has zero mean curvature (or constant in the case of prescribed curvature) we 
can measure how close the approximation is to the exact solution by measuring its curvature, even if we don’t know the 
exact solution. If we denote by � the surface obtained in the approximation and by H its mean curvature, which we can 
evaluate point wise thanks to the high regularity of the space, and if C denotes the prescribed constant curvature (C = 0 for 
a minimal surface) we can consider different norms to measure the approximation quality to the minimal surface, shown in 
Table 2. Moreover the curvature involves up to second order derivatives, which are also included in the natural norm used 
to define F ′ .

The simulations exhibit a fast convergence of the method, in less than 5 iterations the surface is indistinguishable to the 
eye from the exact surface. The same behavior is observed regardless of the resolution, whether 100 or 10000 degrees of 
freedom were used. These observations are consistent with a fixed point method of Newton type. Also, as expected from 
this type of methods, it is necessary to start with an initial surface which is not too far away from the expected solution. 
Since F ′ involves the mean curvature H of the surface, this closeness must be measured with norms involving up to second 
order derivatives.
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Fig. 2. Algorithm 2 is applied to an initial cylinder of radius 1.6 and height 2. The sequence illustrates the initial surface followed by the first three 
iterations. The fourth iteration (not shown) is indistinguishable from the third to the naked eye. For this simulation the spline space used is periodic of 
degree 3, giving a C2 regularity for the solution. Convergence results both in terms of the space polynomial degrees and number of knots for this problem 
are provided in Tables 3 and 4.

Table 3
Curvature error for different norms (cf. Table 2) with the experimental order of convergence in terms of the element size h. The simulation correspond to 
the cylinder to catenoid problem illustrated in Fig. 2, with C2 splines of degree 3. Notice that the experimental order of convergence fits the expected one 
from the theory of approximation with splines.

h Mean error L1 error L2 error L∞ error
1
3 2.39e−03 – 2.32e−01 – 2.63e−01 – 6.63e−01 –
1
6 1.49e−04 4.00 3.23e−02 2.85 3.55e−02 2.89 8.40e−02 2.98
1

12 2.04e−05 2.87 6.92e−03 2.22 7.58e−03 2.23 1.86e−02 2.17
1

24 2.47e−06 3.05 1.66e−03 2.05 1.82e−03 2.06 4.59e−03 2.02
1

48 3.01e−07 3.04 4.13e−04 2.01 4.52e−04 2.01 1.40e−03 1.71

Table 4
L2 error of mean curvature and experimental order of convergence in terms of the mesh size h for different polynomial degrees. The simulations are for 
the cylinder to catenoid problem illustrated in Fig. 2. From the theory of approximation by splines the expected order for the error in H2 norm, which 
bounds the L2-norm of the curvature error is p − 1 when using splines of degree p; this is perceived in the table. Observe that the higher the degree the 
faster the error decreases, for example the same error attained using degree 2 and 192 knots is the same as the one attained using degree 4 with 6 knots.

h Degree 2 Degree 3 Degree 4
1
3 5.51e−01 – 2.63e−01 – 1.12e−01 –
1
6 9.82e−02 2.49 3.55e−02 2.89 4.69e−03 4.58
1

12 2.68e−02 1.87 7.58e−03 2.23 2.75e−04 4.09
1

24 9.42e−03 1.51 1.82e−03 2.06 3.97e−05 2.80
1

48 4.09e−03 1.20 4.52e−04 2.01 – –
1

96 1.96e−03 1.06 – – – –
1

192 9.71e−04 1.01 – – – –

6.1. Catenoid

As a first example we consider the catenoid, which was the first non-planar minimal surface to be discovered, and arises 
by rotating a catenary about an axis (its directrix); it is thus not homeomorphic to a disc. The boundary of this surface is 
the union of two circles of equal radius with centers at the directrix and lying in parallel planes perpendicular to the axis. 
In order to obtain this surface with our method we consider a cylinder as the initial surface. Fig. 2 shows some iterations 
of the method, starting with a cylinder of radius 1.6 and height 2, using a spline space of degree 3 with C2 regularity.

Using the error measures proposed at the beginning of this section (see Table 2), Tables 3 and 4 present the experimental 
convergence rates obtained in terms of the mesh size and polynomial degree, respectively. The mesh size, denoted by h in 
Table 3, is the diameter of the elements in the reference domain, where uniform partitions were used. Table 3 shows 
how the curvature error decreases as we halve the mesh size, for different norms. Notice that the experimental order of 
convergence fits the expected one from the theory of approximation with splines; using degree 3 we expect the H2 norm of 
the error to be of order 2. Similarly, in Table 4, we show how the L2-error of the curvature behaves for different degrees of 
the spline spaces. Also here the expected order of convergence expected by the theory is verified. Observe that the higher 
the degree the faster the error decreases; for example, the same error is attained using degree 2 and 192 knots and using 
degree 4 with 6 knots. The simulations were carried out until it was possible for the given machine precision.

We also obtained a catenoid when taking a truncated cone as the initial surface, where the two circular components 
of the boundary are of different radius. This situation is shown in Fig. 3. Starting from a truncated cone (upper radius 1.6, 
lower radius 3 and height 3) Algorithm 2 quickly converges to a catenoid, and the expected orders of convergence are 
observed for this simulation, even though not reported.
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Fig. 3. A catenoid approximation is also obtained (cf. Fig. 2) if Algorithm 2 is applied to an initial truncated cone. The sequence illustrates the initial surface 
followed by the first two iterations. The third iteration (not shown) is indistinguishable from the second to the naked eye. In this simulation the initial 
cone dimensions are: upper radius 1.6, lower radius 3 and height 3. The spline space used is periodic of degree 3, with 30 knots in each direction. Similar 
order of convergence as of Table 4 were also obtained in this case.

Fig. 4. Algorithm 2 is applied to an initial (axisymmetric) bump on a rectangular region. The sequence illustrates the initial surface followed by the first 
two iterations. After three iterations of the method the surface is numerically flat. For this simulation the initial surface is the graph of the function 
f (x, y) = 3

2 e
− 1

1−x2−y2 χ{x2+y2<1} defined in a square R = [−1.5, 1.5] × [−1.5, 1.5] and the spline space used is of degree 3 with 20 knots per direction. 
A non-axisymmetric perturbation is considered in Fig. 5.

Fig. 5. Algorithm 2 is applied to an initial perturbation on a rectangular region. The sequence illustrates the initial surface followed by the first two 
iterations. After three iterations of the method the surface is numerically flat. For this simulation the initial surface is the graph of the function f (x, y) =
3
2 e

− 1
1−x2−y2 cos(πx) sin(πx) χ{x2+y2<1} defined in a square R = [−1.5, 1.5] × [−1.5, 1.5] and the spline space used is of degree 3 with 20 knots per 

direction. In this graph z axis is rescaled by a factor 2.

6.2. Planar regions

Another instance for which we know the minimal surface is when the boundary curve lies on a plane. In order to test 
this situation with our numerical method we fed Algorithm 2 with an initial surface consisting of a perturbation of a plane 
region. In Figs. 4 and 5 we can see the evolution of two different perturbations of a rectangular region to the rectangle in 
three iterations.

It is interesting to observe that even though in three iterations we have reached the geometry of the plane, the knot 
lines in the plane are not straight. This happens because the surface is updated using normal increments and not vertically 
as a graph. This mesh degeneration may lead to non-convergence in some situations and should be taken into account when 
designing improvements of the algorithm, such as mesh regularizations (see Section 7).

We have also observed that considering different initial surfaces, keeping the height of the bump fixed while decreasing 
its support we reach a configuration where Algorithm 2 ceases to converge. This is explained by the fact that the distance 
between the initial surface and the minimal surface must be small in a strong sense, considering also curvatures (or second 
order derivatives), in order to achieve convergence. If the height of the bump is kept fixed while decreasing the support, 
what we are actually doing is increasing its curvature moving it further away form the expected solution of zero mean 
curvature. What usually happens in this situation is that at a certain step, the image of Xk+1

h := Xk
h + Ph(�k Nk) is not a 

surface because it presents self-intersections (see Fig. 6).
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Fig. 6. In this case, Algorithm 2 produces a self-intersected surface in the first iteration. For this simulation the initial surface is the graph of the function 
f (x, y) = e−x2−y2

defined in a square R = [−2, 2] ×[−2, 2] and the spline space used is of degree 3 with 20 knots per direction. The third image is a zoom 
over the self-intersection zone.

Fig. 7. Algorithm 2 is applied to an initial upper half of a torus, whose boundary lies on the plane. The sequence illustrates the initial surface followed by 
the first two iterations. The third iteration (not shown) is indistinguishable from the second to the naked eye. For this simulation the spline space used is 
of degree 3, with maximum regularity (C2). In this graph, the z axis is rescaled by a factor 2.

Fig. 8. Algorithm 2 is applied to an initial polyhedral surface of four sides. The polyhedron has infinite curvature at the edges but the projection of the 
algorithm makes it a Cm surface. The sequence illustrates the projected initial surface followed by the first three iterations. The fourth iteration (not shown) 
is indistinguishable from the third to the naked eye. For this simulation, C2 splines of degree 3 were used. Notice that using finer mesh size would change 
the initial surface X0 and also the boundary.

Another instance of plane perturbation is shown in Fig. 7. Here starting from half a torus (i.e. a surface of revolution 
whose boundary are two concentric circles in the same plane) the algorithm reaches a ring in the plane.

6.3. Minimal surfaces with singularities

To further investigate the numerical aptitudes of Algorithm 2 we study its behavior when the starting surface has some 
singularity, for example we propose to use a polyhedral surface (the lateral side of a box) as the initial guess. The polyhedron 
has infinite curvature at the edges but the projection of the algorithm makes it a Cm surface. Fig. 8 illustrates some iterations 
for this case. Notice that if the initial surface is not regular (as for the box over its edges) Algorithm 2 uses a projection that 
would still provide an initial regular surface. The finer the mesh, the higher the curvature will be at the regions around the 
singular edges of the original box. Clearly in this case the H2 norm of the initial guess goes to infinity on the edges as the 
mesh size decreases. Therefore, when h is very small, the initial guess is far from the minimal surface, and the algorithm 
fails to converge.

Another type of singularity may occur when the starting surface is smooth but it’s boundary is not. An example is a 
“square” piece of a sphere (see Fig. 9). Here the curvature at the corner points of the boundary will not change as long as 
the boundary is not changed, because the curvature along two linearly independent directions is fixed. Regardless of the 
surface we consider for this boundary the mean curvature at the corners is given, and nonzero in the example. Nevertheless, 
Algorithm 2 still converges and the resulting surface is a minimizer of the area functional, but the mean curvature is not 
zero near the singular points of the boundary, for the discrete surface. The exact minimal surface will have a discontinuous 
mean curvature, which will vanish at the interior of the surface. Figs. 9 and 10 show some iterations starting from a piece 
of sphere and sinusoidal ribbon.
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Fig. 9. Algorithm 2 is applied to an initial spherical piece (smooth). The boundary is not smooth as it presents four corners which have a given curvature. 
The sequence illustrates the initial surface followed by iterations 2 and 5. The sixth iteration (not shown) is indistinguishable from the fifth to the naked 
eye. For this simulation the spline space used is of degree 3.

Fig. 10. Initial surface: ruled surface obtained joining two parallel trigonometric curves. The solution is area minimizer but has nonzero curvature near the 
edges.

Fig. 11. The left frame in the figure is an initial undulating surface with a spherical boundary. This boundary belongs to a sphere of radius 1. Algorithm 2
is then applied to this surface with a prescribed constant curvature parameter C = 2. The sequence illustrates the initial surface followed by the first two 
iterations. After two iterations of the method the surface is indistinguishable to the naked eye from a sphere of radius 1. For this simulation the initial 
surface is given by the parametrization X(s, t) = r(s, t) cos s sin ti + r(s, t) sin s sin t j + r(s, t) cos tk, where r(s, t) = R(1 + ε(s − a)(b − s)(s − a+b

2 )), R = 1
and ε = 10. X is defined for (s, t) ∈ [a, b] × [c, d], where a = 0, b = π/2, c = π/3 and d = 2π/3. The spline space used is of degree 3 with 20 knots per 
direction. Convergence rates for this problem are given in Tables 5 and 6.

Table 5
Curvature error for different norms (cf. Table 2) with the experimental order of convergence in terms of the mesh size h. The simulations correspond to the 
undulating manifold with spherical boundary problem illustrated in Fig. 11. Similar to the situation of minimal surfaces, in the case of constant prescribed 
mean curvature we observe that the experimental order of convergence fits the expected one from the theory of approximation with splines. Here the 
polynomial degree is 3, thus the expected approximation order for the H2 norm is 2. Table 6 shows convergence rates in terms of the mesh size h and 
spline polynomial degree.

Knots Mean error L1 error L2 error L∞ error
1
3 1.96e−01 – 5.88e−01 – 7.64e−01 – 2.43 –
1
6 3.21e−02 2.61 1.30e−01 2.17 2.03e−01 1.91 1.56 0.64
1

12 3.72e−03 3.11 2.71e−02 2.26 4.67e−02 2.13 4.07e−01 1.94
1

24 4.52e−04 3.04 6.70e−03 2.02 1.11e−02 2.07 1.04e−01 1.96
1

48 5.54e−05 3.03 1.68e−03 2.00 2.70e−03 2.04 2.63e−02 1.99

6.4. Surfaces of prescribed mean curvature

In this work we only deal with the case of constant mean curvature (cf. Section 7). Two well known surfaces of constant 
mean curvature are a sphere of radius R , with mean curvature 2

R and a cylinder of radius R with mean curvature 1
R .

In the first example we start with a piece of a sphere that has been previously distorted in the interior by an undulating 
deformation. The boundary of this surface belongs to a sphere of radius R = 1. Then we set the prescribed curvature 
C = 2

R = 2 and let Algorithm 2 proceed. In Fig. 11, we show some iterations of the method. In two iterations the surface 
is indistinguishable to the eye from a sphere of radius 1. A more quantitative measure of the convergence is provided 
in Table 5 that shows the convergence rates for different norms in terms of the mesh size h and Table 6 that gives the 
convergence rates in terms of h for different spline polynomial degree. Similar to the situation of minimal surfaces, in this 
case of constant prescribed mean curvature we observe that the experimental order of convergence fits the expected one 
from the theory of approximation with splines.

In the next example we start with a cylinder of radius R and height 2�. The boundary consists of two parallel circles 
of radius R distant apart by 2�. It not difficult to see that there exists one sphere that contains the boundaries with radius 
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Table 6
L2 error of the mean curvature, with the experimental order of convergence in terms of the element size h and spline polynomial degree. The simulations 
correspond to the undulating manifold with spherical boundary problem illustrated in Fig. 11. From the theory of approximation by splines the expected 
order to approximate the H2 norm with splines of degree p is p − 1, which is numerically verified in the table. Observe that the higher the degree the 
faster the error decreases, for example the same error is archived using degree 2 and 96 knots as using degree 4 with 6 knots.

h Degree 2 Degree 3 Degree 4
1
3 8.29e−02 – 7.64e−01 – 3.47e−01 –
1
6 4.34e−01 −2.39 2.04e−01 1.91 6.24e−02 2.48
1

12 2.22e−01 0.97 4.67e−02 2.13 1.00e−02 2.63
1

24 1.09e−01 1.02 1.11e−02 2.07 1.35e−03 2.90
1

48 5.45e−02 1.01 2.70e−03 2.04 – –
1

96 2.72e−02 1.00 – – – –
1

192 1.36e−02 0.99 – – – –

Fig. 12. The left frame in the figure is an initial cylinder radius R = 1.6 and height 2l = 2. The boundary of this cylinder is contained in a sphere of 
radius r = √

l2 + R2. Algorithm 2 is then applied to this cylinder using a prescribed constant curvature parameter C = 2
r . The sequence illustrates the initial 

surface followed by some iterations. In the last iteration shown the surface is indistinguishable from a sphere of radius r. The spline space used is periodic 
of degree 3 with 20 knots per direction. And the iterations are 1, 3, 10. In Fig. 13 the process is reverted.

Fig. 13. The left frame in the figure is an initial truncate sphere of radius r. The top and bottom truncation are symmetric forming two boundary circles of 
radius R and 2l distant apart. The cylinder with this same boundary has a mean curvature 1

R . Algorithm 2 is then applied to spherical initial surface using 
a prescribed constant curvature parameter C = 1

R . The sequence illustrates the initial surface followed by some iterations. In the last iteration shown the 
surface is indistinguishable from a cylinder of radius R and height 2l. The spline space used is periodic of degree 3 with 20 knots per direction. And the 
iterations are 1, 3, 9. This simulation is the reverted direction of the one shown in Fig. 12.

r = √
�2 + R2. The simulation, illustrated in Fig. 12, consists in using Algorithm 2 starting from the cylinder and setting the 

prescribed curvature parameter C = 2
r .

Another associated example is to consider reverting the process of the previous problem. This is, to start from a truncated 
sphere of radius r and set the prescribed curvature parameter C = 1

R . The iterations of such example are depicted in Fig. 13, 
starting from a spherical piece of a sphere of radius r with boundary consisting of two parallel circles of radius R and 2�

apart we apply Algorithm 2 setting the prescribed curvature parameter C = 1
R .

7. Conclusions and future directions

We have developed a Newton type algorithm to approximate parametric surfaces of prescribed constant mean curvature. 
The algorithm is especially suited to its implementation using isogeometric elements or splines. We described its implemen-
tation with Cm−1 splines of degree m using the isogeometric software library igatools [8]. We illustrated its behavior 
through several examples. The algorithm converges in very few iterations, provided the initial guess is close to the exact 
solution, not only in Hausdorff distance, but in a distance which involves the curvature, i.e., second order derivatives. When 
considering a sequence of meshes with decreasing mesh size, the expected rate from approximation theory was observed 
in all situations, for different polynomial degrees.

If the initial surface is far from the solution, the proposed method will not converge in general. If this is the case some 
other method (or modification) must be included to provide a good initial surface. If the sought surface is a minimizer of 
some functional for which a gradient flow is easy to compute, then one can use a gradient flow strategy to generate the 
initial surface.

We believe that it is possible within the algorithm proposed in this work to specify the “slope” or “contact angle” of 
the surface on a portion of its boundary. This would be useful for surface tension problems involving droplets on surfaces. 
For instance, one could have a surface whose boundary is constrained to lie on another surface (the substrate), but is free 
to move within that surface. One would then need to prescribe the contact angle of the first surface (with respect to the 
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substrate) on its boundary curve. This would be desirable for simulating equilibrium shapes of droplets interacting with 
rigid walls (see [14,15]).

We have only presented the algorithm and its motivation, with many examples illustrating its very good performance. 
A thorough analysis of sufficient conditions guaranteeing convergence will be subject of future research, as are those which 
we comment below:

Relaxation steps: We intend to develop an algorithm to approach a desired curvature by moving through intermediate cur-
vatures, and should work even for initial surfaces that are far from the exact solution. The idea is to aim at a 
curvature which is closer to that of the current surface—using the algorithm described here—then update, and 
repeat.

Reparametrization and regularization: We intend to reparametrize the surface inside the Newton iterations as this idea leads 
to improvement on the conditioning of the discrete problem. This is a mathematically tractable way of controlling 
what is usually called mesh smoothing, or moving strategies.

Nonconstant prescribed curvature: The idea is to adapt the algorithm proposed here to allow for approximation of surfaces 
of prescribed variable mean curvature. It seems that the right problem to study is the case of a prescribed variable 
mean curvature defined in the embedding space, albeit it is not yet well understood for which variable target 
curvatures the problem is well posed. Even though the algorithm can be stated in a similar way we need to 
modify it to incorporate the generation of the initial surface. Notice that our method requires an initial surface 
that is close to the solution in a norm involving second order derivatives, which in this case means that the 
variable curvature of the initial surface must be close to the prescribed one. So the issue that we want to address 
in a different paper is how to adapt the method so as to generate a relaxation path to obtain the sought surface.

Willmore flow and surface diffusion: We plan to design algorithms using isogeometric elements to simulate surface diffusion 
and Willmore flow, these are nonlinear evolutionary problems where the unknown is a surface which undergoes 
deformations based on derivatives of its mean and/or Gauss curvature. These equations appear in numerous ap-
plications in material science and biology. The ideas behind the algorithm developed here might be useful when 
leading with the nonlinearities.
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Appendix A

In this section we collect the more technical proofs of some statements presented in the paper. The following results, 
except for a counterexample showing the non-invertibility of F ′, are known (see for example [12,16,17]). For the sake of 
completeness we have decided to include them here, in an appendix, not to interfere with the flow of ideas in the main 
part of the manuscript.

A.1. Auxiliary results

We first state some calculus result on surfaces analogous to those in Euclidean spaces such as product formulas and the 
divergence theorem, which can be easily proved from the definitions (4) and (7).

Lemma A.1 (Product formulas). Let α, u, v and S be smooth fields in �, with α scalar valued, u and v vector valued, and S tensor 
valued. Then

1. D�(�u) = u ⊗ ∇�� + �D�u,
2. div�(�u) = �div�u + u · ∇��,
3. ∇�(u · v) = D�uT v + D� v T u,
4. div�(u ⊗ v) = udiv� v + D�uv ,
5. div�(S T u) = S · D�u + u · div� S.

Lemma A.2 (Divergence theorem). (See [12].) If u ∈ C1(�, R3), then∫
�

div� u =
∫
∂�

u · ns +
∫
�

Hu · n,

where ns is normal to ∂�, H is the mean curvature and n is a unit normal vector field on �.
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In order to obtain first and second variation of the area operator for surfaces we need to compute some auxiliary 
derivatives. Recall that given V and W two finite-dimensional normed vector spaces, D an open subspace of V , and f :
D → W , we say that f is differentiable at x ∈ D if there exists a linear transformation D f (x) : V → W such that

f (x + u) − f (x) = D f (x)[u] + o(u), (16)

for any u ∈ V with x + u ∈D, where ‖o(u)‖W /‖u‖V → 0 when ‖u‖V → 0. We call D f (x) the derivative of g at x.
Let Mm×n be the space of m by n matrices and Mn =Mn×n . It is possible to show (see [18]) that

1. If T : V → W is a linear transformation then DT (u)[v] = T (v), for all u, v ∈ V .
2. If f :Mm×n →Mn is given by f (A) = AT A then

D f (A)[B] = AT B + BT A, for all A, B ∈ Mm×n. (17)

3. If A ∈Mn , then

D det(A)[U ] = tr(cof(A)T U ) = det(A) tr(A−1U ), for all U ∈ Mn, (18)

with the last equality only valid if A is invertible.
4. If �(A) = A−1 for A ∈Mn invertible then

D�(A)[M] = −A−1M A−1, for all M ∈ Mn. (19)

We now state and prove some auxiliary variational derivatives of geometric objects.

Lemma A.3 (First variation of 
√

g). Let g :Rm(�) → Cm−1(�; R) be given by g(X) = det(D X T D X). Then, the variation of 
√

g is

(√
g
)′

(X)[U ] = div�u ◦ X
√

g

for any U ∈V , where u = U ◦ X−1 is the push-forward of U .

Proof. To obtain (
√

g)′(X)[U ], where g(X) = det G(X) and G(X) = D X T D X , we use the chain rule and formulas as follows: 
(18) and (19). Then, we have

(
√

g)′(X)[U ] = 1

2
√

g
(det G)′(X)[U ] = 1

2
√

g
det G tr(G−1G ′(X)[U ])

Now, recall that S · P = tr(S T P ), so that

(
√

g)′(X)[U ] =
√

g

2
G−1 · (D X T DU + DU T D X)

= √
g G−1 · D X T DU = √

gD XG−1 · DU ,

where in the last we have used that S · P = S · P T , if S is a symmetric tensor. Then

G−1 · D X T DU = tr(DU G−1 D X T ) = div�u ◦ X . �
Lemma A.4 (First variation of the normal). Let X ∈ Rm(�), if N ∈ C1(�, R3) is such that the push-forward n = N ◦ X−1 is the unit 
normal vector field of the surface � = X(�), then

N ′(X)[U ] = −D�uT n = −∇�(u · n) + D�n � u,

for any U ∈V , where the right-hand side is evaluated in P ∈ � and the left one in p = X(P ) ∈ �.

Proof. Since N · N ≡ 1, we have N ′(X)[U ] · N = 0, for any U ∈ V . Then N ′(X)[U ] ∈ T p(�) and we can write N ′(X)[U ] =
D X A, for some A ∈R

2. If we denote with {e1, e2} the canonical basis of R2, then D Xei · N ≡ 0 and this implies

N ′(X)[U ] · D Xei = −(D X)′[U ]ei · N = −DU ei · N

and also

D X T D X A · ei = −DU T N · ei, for i = 1,2.

Since G = D X T D X is invertible, A = −G−1 DU T N and then N ′(X)[U ] = −(DU G−1 D X T )T N . Since DU G−1 D X T is the 
matrix representation in canonical basis of D�u, we obtain the first identity.
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To prove that

D�uT n = ∇�(u · n) − D�n � u,

we split u into its normal and tangential parts: u = un + ut , where un = (u · n)n and ut = �u. Applying Lemma A.1 we 
have D�un = n ⊗ ∇�(u · n) + (u · n)D�n�. Then D�uT

n n = ∇�(u · n).
Finally, if we derive ut · n ≡ 0 we obtain

D�uT
t n = −D�nT ut = −D�n � u,

where we have used that D�n is symmetric in T p(�). �
A.2. Proof of Lemma 3.1

Starting from (1) and using Lemma A.3 we get

J ′(X)[U ] =
⎛
⎝∫

�

√
g dP

⎞
⎠

′
(X)[U ] =

∫
�

(
√

g)′(X)[U ]dP =
∫
�

div�u dp, (20)

where we have use that dp = √
g dP . Finally, using divergence theorem (Lemma A.2) and that u = 0 in ∂�, we obtain the 

desired result. �
A.3. Proof of Lemma 4.1

We first prove a formula for the second variation of the area functional.

Lemma A.5 (Second variation of J ). If X ∈Rm(�) and � = X(�), we have

J ′′(X)[U ][V ] =
∫
�

D�uT n · D� v T n + div�u div� v − D�u � · D� v T , (21)

for any U , V ∈V .

Proof. Using (20), we obtain the following expression of J ′(X) in terms of reference space �: J ′(X)[U ] = ∫
�

D XG−1 ·
DU

√
g . For a fixed U ∈ V define L(X) := J ′(X)[U ] and let us compute its first variation. Let V ∈V , by the product rule we 

have

L′(X) =
∫
�

(D X
√

gG−1)′[V ] · DU

=
∫
�

D X(
√

gG−1)′[V ] · DU

︸ ︷︷ ︸
A

+
∫
�

D V G−1 · DU
√

g.

︸ ︷︷ ︸
B

For the first term A, we use the product rule one more time obtaining

A =
∫
�

(
√

g)′[V ]
(

D XG−1 · DU
)

︸ ︷︷ ︸
A1

+
∫
�

D X(G−1)′[V ] · DU
√

g.

︸ ︷︷ ︸
A2

Using the expression for (
√

g)′[V ] from (20),

A1 =
∫
�

(
D XG−1 · D V

)(
D XG−1 · DU

)√
g

=
∫
�

tr
(

D V G−1 D X T
)

tr
(

DU G−1 D X T
)√

g

=
∫

div� v div�u.

(22)
�
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Besides, by (19) we have (G−1)′[V ] = −G−1G ′[V ]G−1, and by (17), G ′[V ] = D X T D V + D V T D X . Then

A2 = −
∫
�

(
D XG−1 D X T D V G−1 + D XG−1 D V T D XG−1

)
· DU

√
g

= A21 + A22.

Observe that

A21 + B =
∫
�

(
I − D XG−1 D X

)
D V G−1 · DU

√
g

=
∫
�

(
I − D XG−1 D X

)
D V G−1 D X T · DU G−1 D X T √

g,

and by (6), we have that I − D XG−1 D X = n ⊗ n ◦ X . Hence

A21 + B =
∫
�

(n ⊗ n) D� v · D�u =
∫
�

D� v T n · D� v T n, (23)

where we have used tensor product properties.
Finally, we write A22 as an integral over �:

A22 = −
∫
�

(D� v �)T · D�u � = −
∫
�

D� v T · D�u �, (24)

where we use that �T = �2 = �.
Using that J ′′(X)[V ][U ] = (A21 + B) + A1 + A22, the assertion follows from (22), (23) and (24). �

Proof of Lemma 4.1. First note that F (X)[U ] = J ′(X)[U ] − C
∫
�

n · u. Since we already have an expression for J ′′(X)[U ][V ], 
we only have to prove that

⎛
⎝∫

�

n · u

⎞
⎠

′
(X)[U ] =

∫
�

(u · n)div� v − D� v T n · u.

Observe that⎛
⎝∫

�

n · u

⎞
⎠

′
(X)[V ] =

∫
�

(
N

√
g
)′

(X)[V ] · U

=
∫
�

N ′(X)[V ]√g · U + N(
√

g)′(X)[V ] · U

=
∫
�

D� v T n · u + (n · u)div� v,

where in the last step we have used Lemmas A.4 and A.3. �
A.4. Proof of Proposition 4.2

Let us consider the identity (10) with U = �N and V = 
N , where � and 
 belong to V = {φ ∈ Cm(�, R) : φ|∂� = 0}. 
We want to show that

F ′(X)[�N][
N] =
∫
�

∇�φ · ∇�ψ +
∫
�

(2K − C H)φψ, (25)

where K and H are the Gaussian and the mean curvature of � = X(�), respectively, and C is the prescribed constant 
mean curvature. Here, as usual, the push-forward of � and 
 is given by φ = � ◦ X−1 and ψ = 
 ◦ X−1, respectively, so 
that u = φn and v = ψn. Note that, by Lemma A.1, D�u = D�(φn) = φD�n � + n ⊗ ∇�φ. This implies D�uT n = ∇�φ and 
div�u = φ tr(D�n) = φ H . Also, using some properties of the product S · Q = tr(S T Q ), we obtain
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(D�u �)T · D� v � = (∇�φ ⊗ n + φD�n�)T · (∇�ψ ⊗ n + ψ D�n�)

= φ ψ(D�nT · D�n)

= φ ψ tr(D�n2).

Then

D�uT n · D� v T n + div�u div� v − D�u � · D� v T

= ∇�φ · ∇�ψ + φ ψ tr(D�n)2 − φ ψ tr(D�n2)

= ∇�φ · ∇�ψ + φ ψ2K ,

(26)

since the Gaussian curvature K = κ1κ2 = 1
2

[
(trD�n)2 − tr(D�n2)

]
.

Finally, since

C
(

u · D� v T n − (u · n)div� v
)

= C (0 − φ ψ tr(D�n)) = −φψ HC, (27)

we add (26) and (27) and integrate over � to obtain the desired result (25). �
A.5. Example of non-invertibility of F ′(X)[U ][V ]

Now we provide an example showing the lack of invertibility of F ′(X)[U ][V ] if arbitrary directions for perturbations are 
allowed. We consider the simplest case of minimal surfaces, i.e., the prescribed mean curvature is C = 0 and thus F = J ′ .

Proposition A.6. There exists a (non-trivial) regular surface � = X(�) and a non-trivial function U ∈ V such that

F ′(X)[U ][V ] = 0, ∀V ∈V .

Proof. Let � be an open subset of R2 and let X ∈ Rm(�) be a parametrization of a regular surface � = X(�) such that 
�0 := X(�0) is planar, for some nonempty open set �0 ⊂ �. Let � ∈ C∞

0 (�0) with � �≡ 0, and let φ = � ◦ X−1 so that 
u = ∇�φ ∈ V is tangential to � and u = 0 in � \ �0, and let V ∈ V be arbitrary. Then, from (10) we have,

F ′(X)[U ][V ] =
∫
�0

D�uT n · D� v T n +
∫
�0

div�u div� v − D�u � · � D� v T (28)

By reparametrization we may assume, without loss of generality, that X(�0) = �0 and moreover, X
(

w
z

)
=

( w
z
0

)
for all (

w
z

)
∈ �0. Hence, in �0 = �0,

D X =
⎡
⎣1 0

0 1
0 0

⎤
⎦ , U

( w
z

) =
⎡
⎣U 1

( w
z

)
U 2

( w
z

)
0

⎤
⎦ , DU

( w
z

) =
⎡
⎣U 1

w

( w
z

)
U 1

z

( w
z

)
U 2

x

( w
z

)
U 2

z

( w
z

)
0 0

⎤
⎦ .

Then the entries in the third row and in the third column of DU G−1 D X T are all zero, whence D�uT n = D�uT

(
0
0
1

)
= 0. 

The first integral in (28) is thus zero.
Observe now that div�u = U 1

w + U 2
z and D�uT · D� v = U 1

w V 1
w + U 2

z V 2
z + U 1

z V 2
w + U 2

w V 1
z . Then∫

�0

div�udiv� v − D�uT · D� v =
∫
�

U 1
w V 2

z − U 1
z V 2

w +
∫
�

U 2
z V 1

w − U 2
w V 1

z .

Since U and V are C2 and vanish on ∂�, the two integrals on the right are zero, due to integration by parts, and thus we 
have found U such that F ′(X)[U ][V ] = 0 for all V ∈V . �
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